INTEL哪个intel 芯片组组开始提供NCQ技术的支持

您现在正在浏览:
IDE 、SATA、SCSI、SAS、FC、SSD硬盘的区别和术语的解释
发布时间:
15:25:19 &
浏览次数:
摘要: FATA, SAS硬盘接口类型术语解析SCSI SCSI的英文全称为“Small Computer System Interface”(小型计算机...
IDE 、SATA、SCSI、SAS、FC、SSD硬盘的区别和术语的解释 - 小鸥...
ATA、SATA、SCSI、SAS、FC硬盘接口技术特点与区别
硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与控制器之间的连接速度,在整个系统中,硬盘接口的性能高低对磁盘阵列整体性能有直接的影响,因此了解一款磁盘阵列的硬盘接口往往是衡量这款产品的关键指标之一。存储系统中目前普遍应用的硬盘接口主要包括SATA、SCSI、SAS和FC等,此外ATA硬盘在SATA硬盘出现前也在一些低端存储系统里被广泛使用。
每种接口协议拥有不同的技术规范,具备不同的传输速度,其存取效能的差异较大,所面对的实际应用和目标市场也各不相同。同时,各接口协议所处于的技术生命阶段也各不相同,有些已经没落并面临淘汰,有些则前景光明,但发展尚未成熟。那么经常困扰客户的则是如何选择合适类型阵列,既可以满足应用的性能要求,又可以降低整体投资成本。现在,我们将带您了解目前常见的硬盘接口技术的差异与特点,从而帮助您选择适合自身需求的最佳方案。
ATA,在并行中没落
ATA (AT Attachment)接口标准是IDE(Integrated Drive Electronics)硬盘的特定接口标准。自问世以来,一直以其价廉、稳定性好、标准化程度高等特点,深得广大中低端用户的青睐,甚至在某些高端应用领域,如服务器应用中也有一定的市场。ATA规格包括了 ATA/ATAPI-6 其中Ultra ATA 100兼容以前的ATA版本,在40-pin的连接器中使用标准的16位并行数据总线和16个控制信号。
最早的接口协议都是并行ATA(Paralle ATA)接口协议。PATA接口一般使用16-bit数据总线, 每次总线处理时传送2个字节。PATA接口一般是100Mbytes/sec带宽,数据总线必须锁定在50MHz,为了减小滤波设计的复杂性,PATA使用Ultra总线,通过“双倍数据比率”或者2个边缘(上升沿和下降沿)时钟机制用来进行DMA传输。这样在数据滤波的上升沿和下降沿都采集数据,就降低一半所需要的滤波频率。这样带宽就是:25MHz 时钟频率x 2 双倍时钟频率x 16 位/每一个边缘/ 8 位/每个字节=
100 Mbytes/sec。
在过去的20年中,PATA成为ATA硬盘接口的主流技术。但随着CPU时钟频率和内存带宽的不断提升,PATA逐渐显现出不足来。一方面,硬盘制造技术的成熟使ATA硬盘的单位价格逐渐降低,另一方面,由于采用并行总线接口,传输数据和信号的总线是复用的,因此传输速率会受到一定的限制。如果要提高传输的速率,那么传输的数据和信号往往会产生干扰,从而导致错误。
PATA的技术潜力似乎已经走到尽头,在当今的许多大型企业中,PATA现有的传输速率已经逐渐不能满足用户的需求。人们迫切期待一种更可靠、更高效的接口协议来替代PATA,在这种需求的驱使下,串行(Serial)ATA总线接口技术应运而生,直接导致了传统PATA技术的没落。
SATA,在低端徘徊
PATA曾经在低端的存储应用中有过光辉的岁月,但由于自身的技术局限性,逐步被串行总线接口协议(Serial ATA,SATA)所替代。SATA以它串行的数据发送方式得名。在数据传输的过程中,数据线和信号线独立使用,并且传输的时钟频率保持独立,因此同以往的PATA相比,SATA的传输速率可以达到并行的30倍。可以说:SATA技术并不是简单意义上的PATA技术的改进,而是一种全新的总线架构。
从总线结构上,SATA 使用单个路径来传输数据序列或者按照bit来传输,第二条路径返回响应。控制信息用预先定义的位来传输,并且分散在数据中间,以打包的格式用开/关信号脉冲发送,这样就不需要另外的传输线。SATA带宽为16-bit。并行Ultra ATA总线每个时钟频率传输16bit数据,而SATA仅传输1bit,但是串行总线可以更高传输速度来弥补串行传输的损失。SATA将会引入1500Mbits/sec带宽或者1.5Gbits/sec带宽。由于数据用8b/10b编码,有效的最大传输峰值是150Mbytes/sec。
目前能够见到的有SATA-1和SATA-2两种标准,对应的传输速度分别是150MB/s和300MB/s。从速度这一点上,SATA已经远远把PATA硬盘甩到了后面。其次,从数据传输角度上,SATA比PATA抗干扰能力更强。从SATA委员会公布的资料来看,到2007年,在第三代串行ATA技术中,个人电脑存储系统将具有最高达600MB/s的数据带宽。此外,串口的数据线由于只采用了四针结构,因此相比较起并口安装起来更加便捷,更有利于缩减机箱内的线缆,有利散热。
虽然厂商普遍宣称SATA支持热插拔,但实际上,SATA在硬盘损坏的时候,不能像SCSI/SAS和FC硬盘一样,显示具体损坏的硬盘,这样热插拔功能实际上形同虚设。同时,尽管SATA在诸多性能上远远优越于PATA,甚至在某些单线程任务的测试中,表现出了不输于SCSI的性能,然而它的机械底盘仍然为低端应用设计的,在面对大数据吞吐量或者多线程的传输任务时,相比SCSI硬盘,仍然显得力不从心。除了速度之外,在多线程数据读取时,硬盘磁头频繁地来回摆动,使硬盘过热是SATA需要克服的缺陷。正是因为这些技术上致命的缺陷,导致目前为止,SATA还只能在低端的存储应用中徘徊。
SCSI,中端存储的主流之选
SCSI(Small Computer System Interface)是一种专门为小型计算机系统设计的存储单元接口模式,通常用于服务器承担关键业务的较大的存储负载,价格也较贵。SCSI计算机可以发送命令到一个SCSI设备,磁盘可以移动驱动臂定位磁头,在磁盘介质和缓存中传递数据,整个过程在后台执行。这样可以同时发送多个命令同时操作,适合大负载的I/O应用。在磁盘阵列上的整体性能也大大高于基于ATA硬盘的阵列。
SCSI规范发展到今天,已经是第六代技术了,从刚创建时候的SCSI(8bit)到今天的Ultra 320 SCSI,速度从1.2MB/s到现在的320MB/s有了质的飞跃。目前的主流SCSI硬盘都采用了Ultra 320 SCSI接口,能提供320MB/s的接口传输速度。SCSI硬盘也有专门支持热拔插技术的SCA2接口(80-pin),与SCSI背板配合使用,就可以轻松实现硬盘的热拔插。目前在工作组和部门级服务器中,热插拔功能几乎是必备的。
相比ATA硬盘,SCSI体现出了更适合中、高端存储应用的技术优势:
首先SCSI相对于ATA硬盘的接口支持数量更多。一般而言,ATA硬盘采用IDE插槽与系统连接,而每IDE插槽即占用一个IRQ(中断号),而每两个IDE设备就要占用一个IDE能道,虽然附加IDE控制卡等方式可以增加所支持的IDE设备数量,但总共可连接的IDE设备数最多不能超过15个。而SCSI的所有设备只占用一个中断号(IRQ),因此它支持的磁盘扩容量要比ATA更为巨大。这个优点对于普通用户而言并不具备太大的吸引力,但对于企业存储应用则显得意义非凡,某些企业需要近乎无节制地扩充磁盘系统容量,以满足网络存储用户的需求。
其次:SCSI的带宽很宽,Ultra 320 SCSI能支持的最大总线速度为320MB/s,虽然这只是理论值而已,但在实际数据传输率方面,最快 ATA/SATA的硬盘相比SCSI硬盘无论在稳定性和传输速率上,都有一定的差距。不过如果单纯从速度的角度来看,用户未必需要选择SCSI硬盘,RAID技术可以更加有效地提高磁盘的传输速度。
最后、SCSI硬盘CPU占用率低、并行处理能力强。在ATA和SATA硬盘虽然也能实现多用户同时存取,但当并行处理人数超过一定数量后,ATA/SATA硬盘就会暴露出很大的I/O缺陷,传输速率有大幅下降。同时,硬盘磁头的来回摆动,也造成硬盘发热不稳定的现象。
对于SCSI而言,它有独立的芯片负责数据处理,当CPU将指令传输给SCSI后,随即去处理后续指令,其它的相关工作就交给SCSI控制芯片来处理;当SCSI“处理器”处理完毕后,再次发送控制信息给CPU,CPU再接着进行后续工作,因此不难想像SCSI系统对CPU的占用率很低,而且SCSI硬盘允许一个用户对其进行数据传输的同时,另一位用户同时对其进行数据查找,这就是SCSI硬盘并行处理能力的体现。
SCSI硬盘较贵,但是品质性能更高,其独特的技术优势保障SCSI一直在中端存储市场占据中流砥柱的地位。普通的ATA硬盘转速是5400或者7200 RPM;SCSI 硬盘是10000或者15000 RPM,SCSI硬盘的质保期可以达到5年,平均无故障时间达到1,200,000小时。然而对于企业来说,尽管SCSI在传输速率和容错性上有极好的表现,但是它昂贵的价格使得用户望而却步。而下一代SCSI技术SAS的诞生,则更好的兼容了性能和价格双重优势。
SAS,接口协议的明日帝国
SAS 是Serial Attached SCSI的缩写,即串行连接SCSI。和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。
SAS是新一代的SCSI技术,同SATA之于PATA的革命意义一样,SAS 也是对SCSI技术的一项变革性发展。它既利用了已经在实践中验证的 SCSI 功能与特性,又以此为基础引入了SAS扩展器。SAS可以连接更多的设备,同时由于它的连接器较小,SAS 可以在3.5 英寸或更小的 2.5 英寸硬盘驱动器上实现全双端口,这种功能以前只在较大的 3.5 英寸光纤通道硬盘驱动器上能够实现。这项功能对于高密度服务器如刀片服务器等需要冗余驱动器的应用非常重要。
为保护用户投资,SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。过去由于SCSI、ATA分别占领不同的市场段,且设备间共享带宽,在接口、驱动、线缆等方面都互不兼容,造成用户资源的分散和孤立,增加了总体拥有成本。而现在,用户即使使用不同类型的硬盘,也不需要再重新投资,对于企业用户投资保护来说,实在意义非常。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。
SAS 使用的扩展器可以让一个或多个 SAS 主控制器连接较多的驱动器。每个扩展器可以最多连接 128 个物理连接,其中包括其它主控连接,其它 SAS 扩展器或硬盘驱动器。这种高度可扩展的连接机制实现了企业级的海量存储空间需求,同时可以方便地支持多点集群,用于自动故障恢复功能或负载平衡。目前,SAS接口速率为3Gbps,其SAS扩展器多为12端口。不久,将会有6Gbps甚至12Gbps的高速接口出现,并且会有28或36端口的SAS扩展器出现以适应不同的应用需求。其实际使用性能足于光纤媲美。
SAS虽然脱胎于SCSI,但由于其突出的适于高端应用的性能优势,更普遍把SAS与光纤技术进行比较。由于SAS由SCSI发展而来,在主机端会有众多的厂商兼容。SAS采用了点到点的连接方式,每个SAS端口提供3Gb带宽,传输能力与4Gb光纤相差无几,这种传输方式不仅提高了高可靠性和容错能力,同时也增加了系统的整体性能。在磁盘端,SAS协议的交换域能够提供16384个节点,而光纤环路最多提供126个节点。而兼容SATA磁盘所体现的扩展性是SAS的另一个显著优点,针对不同的业务应用范围,在磁盘端用户可灵活选择不同的存储介质,按需降低了用户成本。
在SAS接口享有种种得天独厚的优势的同时,SAS产品的成本从芯片级开始,都远远低于FC,而正是因为SAS突出的性价比优势,使SAS在磁盘接口领域,给光纤存储带来极大的威胁。目前已经有众多的厂商推出支持SAS磁盘接口协议的产品,虽然目前尚未在用户层面普及,但SAS产品部落已经初具规模。SAS成为下一代存储的主流接口标准,成就磁盘接口协议的明日辉煌已经可以预见。
FC,高端应用的基石
光纤通道标准已经被美国国家标准协会(ANSI)采用,是业界标准接口。通常人们认为它是系统与系统或者系统与子系统之间的互连架构,它以点对点(或是交换)的配置方式在系统之间采用了光缆连接。当然,当初人们就是这样设想的,在众多为它制订的协议中,只有IPI(智能外设接口)和IP(网际协议)在这些配置里是理想的。
后来光纤通道的发展囊括了电子(非光学)实现,并且可以用成本相对较低的方法将包括硬盘在内的许多设备连接到主机端口。对这个较大的光纤通道标准集有一个补充称为光纤通道仲裁环(FC-AL)。FC-AL使光纤通道能够直接作为硬盘连接接口,为高吞吐量性能密集型系统的设计者开辟了一条提高I/O性能水平的途径。目前高端存储产品使用的都是FC接口的硬盘。
FC硬盘名称由于通过光学物理通道进行工作,因此起名为光纤硬盘,现在也支持铜线物理通道。就像是IEEE-1394, Fibre Channel 实际上定义为SCSI-3标准一类,属于SCSI的同胞兄弟。作为串行接口FC-AL峰值可以达到2Gbits/s甚至是4Gbits/s。而且通过光学连接设备最大传输距离可以达到10KM。通过FC-loop可以连接127个设备,也就是为什么基于FC硬盘的存储设备通常可以连接几百颗甚至千颗硬盘提供大容量存储空间。
关于光纤硬盘以其的优越的性能、稳定的传输,在企业存储高端应用中担当重要角色。业界普遍关注的焦点在于光纤接口的带宽。最早普及使用的光纤接口带宽为1Gb,随后2Gb带宽光纤产品统治市场已经长达三年时间。现在最新的带宽标准是4Gb,目前普遍厂商都已经推出4Gb相关新品,Gartner则预言4Gb光纤产品在未来2年将以300%的年复合成长率快速增长,并在2007年取代2Gb光纤成为市场主流。
对于这份报告提出的观点,业界的看法不一。有的人认为,2Gb光纤信道正式取代1Gb也不过才不到3年的时间,供货商又紧接着推出4Gb的产品,企业的接受度令人存疑。另一方面,磁盘接口端SAS技术的兴起,和主机接口端iSCSI技术的发展,也给光纤存储的发展带来不小的压力。
事实上,4Gb光纤信道传输协议早在2002年就已经通过美国国家标准协会(ANSI)的光纤信道实体接口(Fibre Channel-Physical Interfaces,简称FC-PI)规范,而与此同时,10Gb光纤标准也在同一年发表,但由于10Gb光纤并不具备向下兼容的能力,用户如果希望升级到10Gb光纤平台,则必须更换所有基础设施,成本过于昂贵,一直无人问津。
相较之下,4Gb是以2Gb为基础延伸的传输协议,可以向下兼容1Gb和2Gb,所使用的光纤线材、连接端口也都相同,意味着使用者在导入4Gb设备时,不需为了兼容性问题更换旧有的设备,不但可以保护既有的投资,也可以采取渐进式升级的方式,逐步淘汰旧有的2Gb设备。而目前,各存储厂商推出的4Gb光纤新品与2Gb光纤产品已无价格差距,用户可在相差不多的情况下购买到4 Gb光纤产品,从这个意义来说,4Gb光纤产品的普及也是指日可待。
随需而变 灵活选择
网络存储设备目前大致可分为3类,即高端、中端和近线(Near-Line)。目前,高端存储产品主要应用的是光纤通道硬盘,应用于关键数据的大容量实时存储。中端存储设备则主要采用SCSI,应用于商业级的关键数据的大容量存储。近线是近年来新出现的存储领域,一般采用SATA硬盘存储,应用于非关键数据的大容量存储,目的是替代以前使用磁带的数据备份。
今后几年,光纤通道和SAS将成为存储上的首选接口,这两种技术在实际性能上的表现几乎相同。但是,从发展前景来看,在大约一年以后,SAS的传输带宽还有可能将增加一倍,而光纤通道下一步是发展到8Gbps还是10Gbps目前还无定论,且发展到8Gb或者10Gb后,向下兼容的问题还没有有效解决。
目前,哪种技术更好一些,光纤还是SAS,仍然很难定夺。但是由于并行SCSI占据着80%左右的企业硬盘市场,并且SAS兼容低端的SATA硬盘。这样当用户预算紧张的时候,可以选择搭配SATA硬盘;当性能为重时,则可以更换为高性能的SAS硬盘。因此,根据富士通公司的预测:在未来几年内,SAS将有可能占据绝大多数的中高端存储市场。
对于用户来说:单纯比较硬盘并不一定是越贵的越好,关键是看是否适合自己的应用。另外单纯硬盘的硬盘接口协议也不是衡量一个存储系统性能指标的唯一要素,除了硬盘性能指标以外,存储系统的硬件设计,前端主机接口等性能指标也同样对存储系统的整体性能影响巨大。如果需要应用于I/O负载较轻的应用比如文件共享、FTP、音频存储、数据备份等可以考虑基于SATA硬盘的阵列。如果I/O负载较重的FTP、VOD、EMAIL、Web、数据库应用,那么可以考虑基于SCSI/SAS硬盘的存储系统;如果是较大规模的数据中心,硬盘数量需求巨大,考虑到目前SAS技术的不成熟,我们仍然推荐选用基于光纤硬盘的存储系统。
目前市场上的硬盘接口类型主要有IDE、SATA、SCSI、SAS、FC等。 IDE是俗称的并口,SATA是俗称的串口,这两种硬盘是个人电脑和低端服务器常见的硬盘。SCSI是"小型计算机系统专用接口"的简称,SCSI硬盘就是采用这种接口的硬盘。SAS就是串口的SCSI接口。一般服务器硬盘采用这两类接口,其性能比上述两种硬盘要高,稳定性更强,但是价格高,容量小,噪音大。FC是光纤通道,和SCIS接口一样,光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬盘系统中。SSD也称作电子硬盘或者固态电子盘,是由控制单元和固态存储单元(DRAM或FLASH芯片)组成的硬盘。固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的相同,在产品外形和尺寸上也与普通硬盘一致。新一代的固态硬盘普遍采用SATA-2接口,但其成本较高。
一. IDE
IDE(Integrated Drive Electronics集成驱动器电子)的缩写,它的本意是指把控制器与盘体集成在一起的硬盘驱动器,是一种硬盘的传输接口, 它有另一个名称叫做ATA(Advanced Technology Attachment),这两个名词都有厂商在用,指的是相同的东西。
IDE的规格后来有所进步,而推出了EIDE(Enhanced IDE)的规格名称,而这个规格同时又被称为Fast ATA。所不同的是Fast ATA是专指硬盘接口,而EIDE还制定了连接光盘等非硬盘产品的标准。而这个连接非硬盘类的IDE标准,又称为ATAPI接口。而之后再推出更快的接口,名称都只剩下ATA的字样,像是Ultra ATA、ATA/66、ATA/100等。
早期的IDE接口有两种传输模式,一个是PIO(Programming I/O)模式,另一个是DMA(Direct Memory Access)。虽然DMA模式系统资源占用少,但需要额外的驱动程序或设置,因此被接受的程度比较低。后来在对速度要求愈来愈高的情况下,DMA模式由于执行效率较好,操作系统开始直接支持,而且厂商更推出了愈来愈快的DMA模式传输速度标准。而从英特尔的430TX芯片组开始,就提供了对Ultra
DMA 33的支持,提供了最大33MB/sec的的数据传输率,以后又很快发展到了ATA 66,ATA 100以及迈拓提出的ATA 133标准,分别提供66MB/sec,100MB/sec以及133MB/sec的最大数据传输率。值得注意的是,迈拓提出的ATA 133标准并没能获得业界的广泛支持,硬盘厂商中只有迈拓自己才采用ATA 133标准,而日立(IBM),希捷和西部数据则都采用ATA 100标准,芯片组厂商中也只有VIA,SIS,ALi以及nViidia对次标准提供支持,芯片组厂商中英特尔则只支持ATA
100标准。  
各种IDE标准都能很好的向下兼容,例如ATA 133兼容ATA 66/100和Ultra DMA33,而ATA 100也兼容Ultra DMA 33/66。
要特别注意的是,对ATA 66以及以上的IDE接口传输标准而言,必须使用专门的80芯IDE排线,其与普通的40芯IDE排线相比,增加了40条地线以提高信号的稳定性。
二.
SATA
使用SATA(Serial ATA)口的硬盘又叫串口硬盘。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范。
2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范(SATA II)。
Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有非常多的优势。
a). Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。
b). 实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。
c). Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s;这比最快的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高;而在Serial ATA 2.0的数据传输率达到300MB/s;最终SATA将实现600MB/s的最高数据传输率。
在选购主板时,其实并无必要太在意IDE接口传输标准有多快,其实在ATA 100,ATA 133以及SATA 150下硬盘性能都差不多,因为受限于硬盘的机械结构和数据存取方式,硬盘的性能瓶颈是硬盘的内部数据传输率而非外部接口标准,目前主流硬盘的内部数据传输率离ATA 100的100MB/sec都还差得很远。所以要按照自己的具体需求选购。
三.
SATA II
SATA的速度是每秒1.5Gbps(150MB/sec),SATA2(Serial ATA 2.0规范)的速度是每秒3Gbps(300MB/sec)。SATAⅡ接口主板能插SATA硬盘,SATA接口主板不能插SATAⅡ盘硬,这都是向下兼容的。
SATA II是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的1.5G进一步提高到了3G,此外还包括NCQ(Native Command Queuing,原生命令队列)、端口多路器(Port Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATA II。
SATA II的关键技术就是3Gbps的外部传输率和NCQ技术。 NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写硬盘的不同位置,与此相反,它会在接收命令后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。
另外并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持 NCQ之外,也要求主板芯片组的SATA控制器支持NCQ。此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。
由于SATA设备市场比较混乱,不少SATA设备提供商在市场宣传中滥用“SATA II”的现象愈演愈烈,例如某些号称“SATA II”的硬盘却仅支持3Gbps而不支持NCQ,而某些只具有1.5Gbps的硬盘却又支持NCQ。所以,由希捷(Seagate)所主导的SATA-IO(Serial ATA International Organization,SATA国际组织,原SATA工作组)又宣布了SATA
2.5规范,收录了原先SATA II所具有的大部分功能——从3Gbps和NCQ到交错启动(Staggered Spin-up)、热插拔(Hot Plug)、端口多路器(Port Multiplier)以及比较新的eSATA(External SATA,外置式SATA接口)等等。
值得注意的是,部分采用较早的仅支持1.5Gbps的南桥芯片(例如VIA VT8237和NVIDIA nForce2 MCP-R/MCP-Gb)的主板在使用SATA II硬盘时,可能会出现找不到硬盘或蓝屏的情况。不过大部分硬盘厂商都在硬盘上设置了一个速度选择跳线,以便强制选择1.5Gbps或3Gbps的工作模式(少数硬盘厂商则是通过相应的工具软件来设置),只要把硬盘强制设置为1.5Gbps,SATA
II硬盘照样可以在老主板上正常使用。
SATA硬盘在设置RAID模式时,一般都需要安装主板芯片组厂商所提供的驱动,但也有少数较老的SATA RAID控制器在打了最新补丁的某些版本的Windows XP系统里不需要加载驱动就可以组建RAID。
四.
SCSI
SCSI的英文全称为“Small Computer System Interface”(小型计算机系统接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的标准接口,而SCSI并不是专门为硬盘设计的接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,但较高的价格使得它很难如IDE硬盘般普及,因此SCSI硬盘主要应用于中、高端服务器和高档工作站中。
五.
SAS
SAS(Serial Attached SCSI)即串行连接SCSI,是新一代的SCSI技术。和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,并且提供与SATA硬盘的兼容性。
SAS的接口技术可以向下兼容SATA。具体来说,二者的兼容性主要体现在物理层和协议层的兼容。
a). 在物理层,SAS接口和SATA接口完全兼容,SATA硬盘可以直接使用在SAS的环境中,从接口标准上而言,SATA是SAS的一个子标准,因此SAS控制器可以直接操控SATA硬盘,但是SAS却不能直接使用在SATA的环境中,因为SATA控制器并不能对SAS硬盘进行控制;
b). 在协议层,SAS由3种类型协议组成,根据连接的不同设备使用相应的协议进行数据传输。其中串行SCSI协议(SSP)用于传输SCSI命令;SCSI管理协议(SMP)用于对连接设备的维护和管理;SATA通道协议(STP)用于SAS和SATA之间数据的传输。因此在这3种协议的配合下,SAS可以和SATA以及部分SCSI设备无缝结合。
SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。所以SAS驱动器和SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。由于SAS系统的兼容性,使用户能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。
在系统中,每一个SAS端口可以最多可以连接16256个外部设备,并且SAS采取直接的点到点的串行传输方式,传输的速率高达3Gbps,估计以后会有6Gbps乃至12Gbps的高速接口出现。
SAS的接口也做了较大的改进,它同时提供了3.5英寸和2.5英寸的接口,因此能够适合不同服务器环境的需求。
SAS依靠SAS扩展器来连接更多的设备,目前的扩展器以12端口居多,不过根据板卡厂商产品研发计划显示,未来会有28、36端口的扩展器引入,来连接SAS设备、主机设备或者其他的SAS扩展器。
和传统并行SCSI接口比较起来,SAS不仅在接口速度上得到显著提升(现在主流Ultra 320 SCSI速度为320MB/sec,而SAS才刚起步速度就达到300MB/sec,未来会达到600MB/sec甚至更多),而且由于采用了串行线缆,不仅可以实现更长的连接距离,还能够提高抗干扰能力,并且这种细细的线缆还可以显著改善机箱内部的散热情况。
SAS目前的不足主要有以下方面:
a). 硬盘、控制芯片种类少:
只有希捷、迈拓以及富士通等为数不多的硬盘厂商推出了SAS接口硬盘,品种太少,其他厂商的SAS硬盘多数处在产品内部测试阶段。此外周边的SAS控制器芯片或者一些SAS转接卡的种类更是不多,多数集中在LSI以及Adaptec公司手中。
b). 硬盘价格太贵:
比起同容量的Ultra 320 SCSI硬盘,SAS硬盘要贵了一倍还多。一直居高不下的价格直接影响了用户的采购数量和渠道的消化数量,而无法形成大批量生产的SAS 硬盘,其成本的压力又会反过来促使价格无法下降。
如果用户想要做个简单的RAID级别,那么不仅需要购买多块SAS硬盘,还要购买昂贵的RAID卡,价格基本上和硬盘相当。
c). 实际传输速度变化不大:
SAS硬盘的接口速度并不代表数据传输速度,受到硬盘机械结构限制,现在SAS硬盘的机械结构和SCSI硬盘几乎一样。目前数据传输的瓶颈集中在由硬盘内部机械机构、硬盘存储技术、磁盘转速,所决定的硬盘内部数据传输速度,也就是80MBsec左右,SAS硬盘的性能提升不明显。
d). 用户追求成熟、稳定的产品:
从现在已经推出的产品来看,SAS硬盘更多的被应用在高端4路服务器上,而4路以上服务器用户并非一味追求高速度的硬盘接口技术,最吸引
他们的应该是成熟、稳定的硬件产品,虽然SAS接口服务器和SCSI接口产品在速度、稳定性上差不多,但目前的技术和产品都还不够成熟。
不过随着英特尔等主板芯片组制造商、希捷等硬盘制造商以及众多的服务器制造商的大力推动,SAS的相关产品技术会逐步成熟,价格也会逐步滑落,早晚都会成为服务器硬盘的主流接口。
六.
FC
光纤通道的英文拼写是Fiber Channel,和SCIS接口一样光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬盘系统中。光纤通道硬盘是为提高多硬盘存储系统的速度和灵活性才开发的,它的出现大大提高了多硬盘系统的通信速度。光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大等。
光纤通道是为在像服务器这样的多硬盘系统环境而设计,能满足高端工作站、服务器、海量存储子网络、外设间通过集线器、交换机和点对点连接进行双向、串行数据通讯等系统对高数据传输率的要求。
七.
SSD
固态硬盘(Solid State Disk或Solid State Drive),也称作电子硬盘或者固态电子盘,是由控制单元和固态存储单元(DRAM或FLASH芯片)组成的硬盘。固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的相同,在产品外形和尺寸上也与普通硬盘一致。由于固态硬盘没有普通硬盘的旋转介质,因而抗震性极佳。其芯片的工作温度范围很宽(-40~85℃)。目前广泛应用于军事、车载、工控、视频监控、网络监控、网络终端、电力、医疗、航空等、导航设备等领域。目前由于成本较高,正在逐渐普及到DIY市场。
由于固态硬盘技术与传统硬盘技术不同,所以产生了不少新兴的存储器厂商。厂商只需购买NAND存储器,再配合适当的控制芯片,就可以制造固态硬盘了。新一代的固态硬盘普遍采用SATA-2接口。
固态硬盘的存储介质分为两种,一种是采用闪存(FLASH芯片)作为存储介质,另外一种是采用DRAM作为存储介质。
(1)基于闪存的固态硬盘(IDE FLASH DISK、Serial ATA Flash Disk):
采用FLASH芯片作为存储介质,这也是我们通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记本硬盘、微硬盘、存储卡、优盘等样式。这种SSD固态硬盘最大的优点就是可以移动,而且数据保护不受电源控制,能适应于各种环境,但是使用年限不高,适合于个人用户使用。
在基于闪存的固态硬盘中,存储单元又分为两类:SLC(Single Layer Cell 单层单元)和MLC(Multi-Level Cell多层单元)。
SLC的特点是成本高、容量小、但是速度快,而MLC的特点是容量大成本低,但是速度慢。MLC的每个单元是2bit的,相对SLC来说整整多了一倍。不过,由于每个MLC存储单元中存放的资料较多,结构相对复杂,出错的几率会增加,必须进行错误修正,这个动作导致其性能大幅落后于结构简单的SLC闪存。此外,SLC闪存的优点是复写次数高达100000次,比MLC闪存高10倍。此外,为了保证MLC的寿命,控制芯片都校验和智能磨损平衡技术算法,使得每个存储单元的写入次数可以平均分摊,达到100万小时故障间隔时间(MTBF)。
(2)基于DRAM的固态硬盘:
采用DRAM作为存储介质,目前应用范围较窄。它仿效传统硬盘的设计、可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。应用方式可分为SSD硬盘和SSD硬盘阵列两种。它是一种高性能的存储器,而且使用寿命很长,美中不足的是需要独立电源来保护数据安全。
SATA FC SAS三种硬盘的比较
Fibre Channel
在线,高可用性,随机读取
适用于型企业中的关键任务资料的存储,例如 SAN ,最多支持 1600 万个位址,线缆最长可达 10 公里,相当昂贵。
Serial Attached SCSI(SAS)
在线,高可用性,随机读取
适用于大、中型企业关键任务资料的存储,效能高而且在本端层次上的扩充性极高,比 FC 便宜,与 SATA 兼容
在线、近线作业,高可用性,随机读取,循序读取
容量高、成本低,与 SAS 兼容
容量高,适合于保存和保证 offsite 资料安全
对于用户来说:单纯比较硬盘并不一定是越贵的越好,关键是看是否适合自己的应用。另外单纯硬盘的硬盘接口协议也不是衡量一个存储系统性能指标的唯一要素,除了硬盘性能指标以外,存储系统的硬件设计,前端主机接口等性能指标也同样对存储系统的整体性能影响巨大。
如果需要应用于I/O负载较轻的应用比如文件共享、FTP、音频存储、数据备份等可以考虑基于SATA硬盘的阵列。如果I/O负载较重的FTP、VOD、EMAIL、Web、数据库应用,那么可以考虑基于SAS/SATA硬盘的存储系统。
ATA,IDE,SCSI,SATA,PATA,FATA,SAS硬盘接口类型术语解析
SCSI
SCSI的英文全称为“Small Computer System Interface”(小型计算机系统接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的标准接口,而SCSI并不是专门为硬盘设计的 接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,但较高的价格使得 它很难如IDE硬盘般普及,因此SCSI硬盘主要应用于中、高端服务器和高档工作站中。
IDE
Integrated Drive Electronics. 传统的PC硬盘驱动器接口标准。它是一个16位并行接口,连接线缆有80个接头,线缆长18英寸,宽3英寸,每通道可驱动两台设备,最高数据传输速率为 100Mbps。由于性能和连接上的限制,ATA使用范围主要局限于台式电脑和移动存储应用。
ATA
Advanced Technology Attachment. 就是以前的IDE。
SATA
使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,
如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
SATA sends data serially, which allows for the use of a slim, round, flexible cable that supports distances up to 1 meter.
Sata uses the same lightweight mechanical components as ATA but also allows for hot swapping of drives, which ATA does not.
PATA
Parallel ATA,其实就是ATA。传统ATA是并行的,出现SATA后,传统ATA有时被称作PATA,以区别SATA。
FATA
FATA是一种混合型硬盘驱动器技术,名为光纤附属适配器(FATA,Fibre Attached Technology Adapted),这种技术是惠普与最大的硬盘厂商希捷公司联合开发的,它可以有效的降低硬盘的成本,从而有助于提高磁盘阵列的性价比。
FATA最大的好处是可以在同一磁盘柜内混合使用FC硬盘驱动器和FATA硬盘驱动器,不足之处在于FC接口略贵于SATA接口,并且硬盘驱动器供应商中 基本上只有希捷和日立掌握FC接口技术,硬盘驱动器的来源有限――反过来说FATA硬盘驱动器的用途也很单一,供应商很难大量生产――进一步抬高了 FATA的成本。况且,就目前来看,即便是采用了FATA硬盘驱动器的EVA产品,也绝少能看到一个磁盘柜内部同时应用FC和FATA硬盘驱动器的情况。
2004年4月,HP宣布联合希捷(Seagate)推出FATA(Fibre Attached Technology Adapted,光纤连接技术改造)硬盘驱动器,并于当年7月在其EVA 中提供了250GB FATA硬盘驱动器的选项。同月,FATA所代表的“低成本、高容量FC接口硬盘驱动器”获得了FCIA(Fibre Channel Industry Association,光纤通道工业协会)的认可。
FATA硬盘驱动器相当于改用FC接口的SATA硬盘驱动器,从而能够与传统的FC硬盘驱动器使用同一种磁盘柜,用户可以根据实际需要随意选择高性 能而昂贵(FC)或大容量且廉价(FATA)的硬盘驱动器,提高了灵活性和任务弹性。与SATA相比,FC接口电路较为复杂,加之产量较小,使得FATA 硬盘驱动器的价格要高于SATA硬盘驱动器,不过磁盘柜的精简可以大致抵消这一不利因素。此外,EMC Symmetrix DMX-3企业级存储系统中采用的LC-FC(Low
Cost Fibre Channel,低成本FC)硬盘驱动器实质上也等同于FATA,但目前尚不清楚会否应用在下一代CLARiiON产品中。
得益于FC的双端口特性,FATA(或LC-FC)硬盘驱动器的可靠性略高于SATA硬盘驱动器,不过与“正宗的”FC硬盘驱动器还差得远,出故障 的几率较大。同时,FATA/SATA硬盘驱动器动辄数百GB的容量和相对缓慢的速度使RAID组重建的时间成倍增加,在此期间出现第二个故障硬盘的风险 很高。为了避免由此导致的数据丢失,那些能够在同一RAID组中有两个硬盘出故障的情况下保护数据的RAID技术开始受到青睐,如HDS所采用的RAID 6(从RAID 5发展而来)和NetApp独有的RAID-DP(RAID
Double Parity,建立在RAID 4基础上的双校验)。
参考:
SATA是Serial ATA的缩写,即串行ATA。这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。SATA总线使用嵌入式时钟信号,具备 了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。 串行接口还具有结构简单、支持热插拔的优点。
与并行ATA相比,SATA具有比较大的优势。首先,Serial ATA以连续串行的方式传送数据,可以在较少的位宽下使用较高的工作频率来提高数据传输的带宽。Serial ATA一次只会传送1位数据,这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其 次,Serial ATA的起点更高、发展潜力更大,Serial
ATA 1.0定义的数据传输率可达150MB/sec,这比目前最块的并行ATA(即ATA/133)所能达到133MB/sec的最高数据传输率还高,而在已 经发布的Serial ATA 2.0的数据传输率将达到300MB/sec,最终Serial ATA 3.0将实现600MB/sec的最高数据传输率。
在此有必要对Serial ATA的数据传输率作一下说明。就串行通讯而言,数据传输率是指串行接口数据传输的实际比特率,Serial ATA 1.0的传输率是1.5Gbps,Serial ATA 2.0的传输率是3.0Gbps。与其它高速串行接口一样,Serial ATA接口也采用了一套用来确保数据流特性的编码机制,这套编码机制将原本每字节所包含的8位数据(即1Byte=8bit)编码成10位数据(即 1Byte=10bit),这样一来,Serial
ATA接口的每字节串行数据流就包含了10位数据,经过编码后的Serial ATA传输速率就相应地变为Serial ATA实际传输速率的十分之一,所以1.5Gbps=150MB/sec,而3.0Gbps=300MB/sec。
SATA的物理设计,可说是以Fibre Channel(光纤通道)作为蓝本,所以采用四芯接线;需求的电压则大幅度减低至250mV(最高500mV),较传统并行ATA接口的5V少上200 倍!因此,厂商可以给Serial ATA硬盘附加上高级的硬盘功能,如热插拔(Hot Swapping)等。更重要的是,在连接形式上,除了传统的点对点(Point-to-Point)形式外,SATA还支持“星形”连接,这样就可以给 RAID这样的高级应用提供设计上的便利;在实际的使用中,SATA的主机总线适配器(HBA,Host
Bus Adapter)就好像网络上的交换机一样,可以实现以通道的形式和单独的每个硬盘通讯,即每个SATA硬盘都独占一个传输通道,所以不存在象并行ATA 那样的主/从控制的问题。
Serial ATA规范不仅立足于未来,而且还保留了多种向后兼容方式,在使用上不存在兼容性的问题。在硬件方面,Serial ATA标准中允许使用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成Serial ATA硬盘能够使用的串行信号,目前已经有多种此类转接卡/转接头上市,这在某种程度上保护了我们的原有投资,减小了升级成本;在软件方面,Serial ATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用Serial
ATA而重写任何驱动程序和操作系统代码。
另外,Serial ATA接线较传统的并行ATA(Paralle ATA)接线要简单得多,而且容易收放,对机箱内的气流及散热有明显改善。而且,SATA硬盘与始终被困在机箱之内的并行ATA不同,扩充性很强,即可以 外置,外置式的机柜(JBOD)不单可提供更好的散热及插拔功能,而且更可以多重连接来防止单点故障;由于SATA和光纤通道的设计如出一辙,所以传输速 度可用不同的通道来做保证,这在服务器和网络存储上具有重要意义。
Serial ATA相较并行ATA可谓优点多多,将成为并行ATA的廉价替代方案。并且从并行ATA过渡到Serial ATA也是大势所趋,应该只是时间问题。相关厂商也在大力推广SATA接口,例如Intel的ICH6系列南桥芯片相较于ICH5系列南桥芯片,所支持的 SATA接口从2个增加到了4个,而并行ATA接口则从2个减少到了1个;nVidia的nForce4系列芯片组已经支持SATA II即Serial ATA 2.0,而且三星已经采用Marvell
88i6525 SOC芯片开发新一代的SATA II接口硬盘.
存储:串行接口与并行接口交接换代
本文转载自电子工程专辑,原作者为Agere公司的策略行销经理 Jeffrey Janukowicz、技术行销经理Bernhard Laschinsky和战略业务主管Tony Grewe,从不同角度简要阐述了串行接口在硬盘存储设备上代替并行接口,所涉及到的技术与产业问题
目前大多数系统都使用并行物理接口标准连接系统总线与硬盘存储设备,不过硬盘驱动器生产商和系统设计人员正着手开发串行接口技术以替代并行物理接口标准。 2003年,存储驱动器技术在并行接口向串行接口的转换上又迈进了一大步,取得一些重大成就,加快了这种已有几十年历史的接口技术的转化。新型串行接口技 术可能引发一场硬盘驱动器设计的革命,同时它还将扩展其服务的存储市场。本文将介绍串行接口标准及其应用上的优点。
除了大幅增加数据传输速度外,串行技术还有另外一些优点,如在IC封装、线缆铺设、功耗及其它重要系统性能等方面。它还可以使存储设备OEM通过更通畅、更简单的接口标准实现存储解决方案,从而提供更快的数据连接。
据业内分析公司IDC预测,在未来几年内,使用串行接口的硬盘驱动器数量将急剧上升,到2006年它将占据全球70%的驱动器市场。基于串行接口的存储解 决方案不仅可提高连接速度,而且还能降低企业系统的成本。IC供应商应充分利用市场转机,寻找经济高效的途径以支持这些新的接口方案。
串行接口开发目的
多年以来,硬盘驱动器接口技术一直被两大并行标准所主宰,分成明显不同的市场阵营。一种是ATA接口(也称作ATA/ATAPI或IDE接口),它是一个 16位并行接口,连接线缆有80个接头,线缆长18英寸,宽3英寸,每通道可驱动两台设备,最高数据传输速率为100Mbps。由于性能和连接上的限 制,ATA使用范围主要局限于台式电脑和移动存储应用。
另一种称为小型计算机系统接口(SCSI),是一种具有更高带宽的方案,用于高端企业存储应用。它是一种16位并行LVDS接口,每个通道可支持16个驱动器,线缆长度12米,有80个接头,速度可以达到320Mbps。
现在绝大多数系统都是安装这样的并行HDD接口,但它们却存在着根本的性能局限。由于一些电气问题(如信号偏移、语音串扰、地反弹及5V容差等)限制了数 据传输速率和距离,所以ATA和SCSI给设计带来很多难题。此外,并行接口要求大量信号线和地线,这意味着芯片封装、PCB走线以及连接器、电缆和机箱 整体设计都比较困难。最后,半双工操作的局限性使并行接口结构无法满足未来系统性能和成本要求。为了克服并行接口的局限性,硬盘存储厂商为下一代硬盘驱动 器开发出了串行接口标准。
串行接口具有几项优点。首先,它是一个4线接口,基于两个差分信号对(发射和接收),信号内部带有时钟,从而简化了时序操作。此外,这种接口对引脚需求量 较少,因此能够增加可集成的端口数量,并简化PCB走线、电缆和连接器设置。这种接口电缆比粗大的并行电缆要细,节省了设备内部空间。低压差分信号可与先 进的半导体工艺匹配,使设计更加简单,并可支持批量生产。与共享(总线式)媒介设计不同,串行接口采用点到点连接,可为每个设备提供全接口带宽。
串行接口标准
1. 台式、移动设备和消费电子产品串行ATA(SATA)是新的物理存储接口标准,可以兼容并替代并行ATA接口软件。支持SATA 1.0标准的硬盘驱动器数据传输速度为150Mbps,这比并行ATA 100Mbps速度提高了50%。
2001年,行业协会“串行ATA工作小组”制订了SATA 1.0接口技术规范。SATA是根据人们设想中未来硬盘驱动技术而创建的,它提供了具体的性能发展规划,SATA 2.0支持300Mbps传输速率,SATA 3.0支持600Mbps传输速率,到2006年可以实现600Mbps传输速率。
2. 高端企业
串行连接SCSI接口(SAS,SCSI的串行版本)已由SCSI业界开发成功,它将SCSI扩展到未来应用,并使接口的性能和多功能性达到另一个高度。 SAS使用SCSI协议,但利用了许多为SATA物理层做的工作,包括允许SAS和SATA实现一定水平的互操作,让系统集成商在成本和性能之间有更多选 择。
SAS技术规范于2003年初基本完成,可以支持150Mbps和300Mbps数据速率。
在比较新串行接口与旧并行接口的速率时,一定要记住并行接口使用总线结构体系,几个硬盘驱动器共享可用接口总带宽。如果有5个硬盘连接到320Mbps SCSI接口,那么每个驱动器的可用有效接口带宽为320Mbps除以5所得的结果,也就是64Mbps。相反,SAS采用点到点结构体系,每个驱动器可 以使用全部接口带宽。这样一来,在实际系统中速率为150Mbps的SAS接口比速率为320Mbps的并行SCSI的性能还要更高。
3.光纤通道
这是第一个部署在大型企业存储应用的千兆位串行接口,经过多年应用,它显示出串行技术所具有的高性能和可靠性。光纤通道可提供100、200和 400Mbps数据速率,主要用在存储区域网(SAN)中。它既可用于存储网络基础设施,也可用作硬盘驱动器连接接口——只要驱动器自身带有光纤通道接 口。
虽然SCSI和光纤通道驱动器极有可能继续主宰企业应用,但整个行业呈现出朝串行接口过渡的重要趋势。从以往的情形看,并行ATA驱动器对企业级应用的吸 引力不大,因为它们在性能和可扩展性方面本身就存在局限性。随着IT管理人员不断将精力集中在减少成本、提高可靠性方面,某些基于企业的低转换密度存储解 决方案可能采用经过重大改进的SATA来替代SCSI和光纤信道驱动器。SATA驱动器的成本是SCSI硬盘驱动器成本的1/4,这个具有巨大潜力的突破 性技术可以帮助高端存储市场朝具有更低成本的方向发展。
从并行到串行过渡
串行设计为技术用户带来的优势是相当明显的,但是普通PC买家更关心是否要为新接口额外支付一笔费用。因此,PC部件供应商和硬盘驱动器供应商将面临来自 客户的巨大压力,以及不增加产品总成本就能从ATA过渡到SATA的竞争压力。实际上,提供与并行ATA一样的价格是SATA设计的一个主要目标。
考虑到市场对成本的要求、台式和便携式电脑的技术发展历程以及在硬盘驱动器和母板端对接口都能提供支持等因素,在从并行技术过渡到串行技术过程中,OEM必须对不同的设计仔细掂量。
先进的半导体集成技术使得一个只有4个IC的硬盘驱动器可以拥有非常复杂的功能。系统级芯片是驱动器的“大脑”,它包括一个微处理器或数字信号处理器、HDD控制器、用于出入硬盘的数据读取信道和ATA接口本身。
2002年,硬盘驱动器生产商开始引进SATA驱动器设计。这些硬盘驱动器设计最初采用所谓的“桥芯片”完成SATA接口。桥芯片实际上是一个分离的“接 口转换器”芯片,可以将传统SoC并行ATA接口与SATA接口进行相互转换。这个解决方案可以在不对历史悠久且结构复杂的并行ATA SoC做任何修改的情况下实现SATA接口功能,但是它也有几个明显的缺点:
1.额外的芯片和相关外围部件导致成本上升、印刷电路板面积增加、生产步骤增多、生产量下降等问题
2.“桥芯片”需要额外的功耗
3.额外的功耗导致“散热”问题
4.SoC和桥芯片间的并行ATA接口产生的电子噪声加剧了电磁干扰(EMI)
5.驱动器印刷电路板增加了设计复杂程度
6.SoC和桥芯片之间的ATA接口性能受到限制
最后一点对理解桥技术的局限性具有关键作用。典型的SATA桥解决方案在SATA接口桥芯片和驱动器SoC之间应用了一个标准并行ATA接口,在这种配置 里,并行ATA接口会成为数据传输速度的一个“瓶颈”,因为它一般只能支持100Mbps的速率,桥芯片的数据率也经常限制在这个水平。
采用桥芯片解决方案可以使产品快速上市,由于可以尽早进入SATA且SATA接口概念已基本确认,它受到了硬盘驱动器供应商们的青睐,它让OEM体验到高 速SATA信号效果,在新技术开发前建设好制造和生产测试设施。不过,桥芯片往往在没有提高性能的情况下增加成本、板空间和功耗,同时还增加设计和生产的 复杂性,所以桥芯片显然只适合充当一个过渡时期的解决方案,不宜大规模采纳。
如果采用集成SATA接口的单芯SoC替换并行ATA接口,IC设计人员可以让OEM在不增加成本和复杂性的情况下拥有一个高性能硬盘驱动器子系统。这种 解决方案不要求在驱动器中额外添加部件,同时保证SoC可以充分利用SATA减少信号数量的优点。同移动PC和消费电子产品的硬盘驱动器设计双芯“桥”和 产品相比,集成了SATA的SoC可以节省板空间,更容易实施,同时增加了可靠性并可减少功耗,这些都是很关键的考虑因素。将SATA接口直接集成到 SoC是向更高集成度发展的自然趋势,但是它本身也有自己的问题。SoC包含非常复杂的读取信道IC,可以对前置放大器的电子信号进行处理。在设计集成
SATA SoC过程中,必须考虑采取适当的信号完整性保护措施,以确保来自SATA接口的高速信号不会干扰读取信道的运行。同样地,SATA信号发射器和接收器都 是高性能电路,应当小心避免电气噪声的干扰。
在复杂的硬盘驱动器SoC设计中成功实现SATA接口集成,需要具备高超的混合信号设计专业知识,这样才能得到一个可以降低成本、提高驱动器的性能和可靠性的解决方案。
继SATA之后,开发人员又推出了SAS驱动器设计,以前开发SATA的许多经验都可以应用到SAS上。带分立SAS接口芯片的解决方案(与SATA桥芯 片相似)可用作早期概念证明和协议软件确认,不过物理接口层有望集成到SAS驱动器控制器ASIC中,也即是第一批投入商用的SAS HDD上。对于硬盘驱动器,由于IC封装的功耗问题,SAS控制器IC和光纤信道控制器一般不包括读取信道模块,这样可减缓部分SoC集成问题。
支持任何协议的串行方案
直到最近,并行ATA、并行SCSI和光纤通道三种最普遍的存储接口技术才有了各自清晰界定的应用领域,彼此之间的交迭相对很少。引入SATA和SAS后 将改变这种情况,三种接口技术的物理接口层和连接能力正变得越来越相似,客户需要针对应用挑选最佳产品组合,硬盘及其它存储产品生产商则必须为三种接口提 供同等的支持。
同样,生产商也要求他们的IC供应商提供灵活的解决方案。理想的IC解决方案应当是一个IC可以同时满足三种接口,而不增加任何一种的成本。虽然三种接口 协议不同,在创建单个IC解决方案时也会面临不同的挑战,但是由于物理接口层存在着相似之处,所以三种接口可以采用通用的标准构件,这样的标准构件将包含 SATA、SAS和光纤信道共有的核心功能,而那些不同的参数则可以配置和编程。
千兆位串行接口的核心功能是通过并串/串并转换(SERDES)建立的,它将存储设备内部使用的并行格式和数据传输中使用的串行格式的数据进行相互转换,核心模块通常称作物理层(PHY)。
SERDES最关键的性能参数是发射信号中的低抖动和接收信号的高抖动容限,二者都表现出明显的电源噪声。尽管不同接口标准对不同方法的参数进行了规定,但不同标准的实际要求却非常相似。
不同接口标准中有不同的电气参数(如串行信号的振幅与升降次数),它们在SERDES中可以进行编程处理。OEM经常需要在系统级优化接口性能,并且希望超越具体标准中严格要求的特性和可编程性,因此对一个接口标准所要求的可编程性可以自动包含在其它标准里。
如今的半导体工艺技术可在满足低成本台式硬盘驱动器市场需求的前提下实现高性能SERDES,支持三个接口标准对所有数据速率的要求,这样一个通用解决方 案大大缩短了OEM产品的面市时间。同时不管选择何种接口,这个解决方案都可以提供更低的成本和更高可靠性。由于OEM可以利用一个经验证的硅平台创建多 个串行设计和接口,所以还可能提高其它方面的效率。
小结
正如上文所述,转换到串行解决方案必须要有硬盘驱动器和PC母板的接口支持,由于领先的PC微处理器公司准备大量生产基于SATA的母板芯片组,所以众多硬盘生产商也已将它们的发展方向与此对应,并于2003年下半年开始部署SATA。
现在硬盘OEM正在将并行接口转化为串行接口,这样它们才能与刚上市的新PC芯片组和母板保持兼容,节约成本。尽管在过渡期间,主要的PC OEM都还支持并行、串行驱动器。但非常明显的是,它们将放弃并行接口,将所有设计很快转变为串行接口。在存储市场串行接口的长期使用过程中,只有那些通 过高集成度串行IC解决方案提供经济高效产品的硬盘驱动器OEM才能立于不败之地。
本周技术实现排行}

我要回帖

更多关于 intel 芯片组 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信