linux linux删除文件夹操作。

保持登录。
单击提交则表示您同意developerWorks 的条款和条件。 查看条款和条件.
在您首次登录 developerWorks 时,会为您创建一份个人概要。您的个人概要中的信息(您的姓名、国家/地区,以及公司名称)是公开显示的,而且会随着您发布的任何内容一起显示,除非您选择隐藏您的公司名称。您可以随时更新您的 IBM 帐户。
所有提交的信息确保安全。
当您初次登录到 developerWorks 时,将会为您创建一份概要信息,您需要指定一个昵称。您的昵称将和您在 developerWorks 发布的内容显示在一起。昵称长度在 3 至 31 个字符之间。 您的昵称在 developerWorks 社区中必须是唯一的,并且出于隐私保护的原因,不能是您的电子邮件地址。
单击提交则表示您同意developerWorks
的条款和条件。 .
所有提交的信息确保安全。
developerWorks 社区:
我的概要信息
选择语言:
日志文件系统可以在系统发生断电或者其它系统故障时保证整体数据的完整性,Linux是目前支持日志文件系统最多的操作系统之一,本文重点研究了Linux常用的日志文件系统:EXT3、ReiserFS、XFS和JFS日志技术,并采用标准的测试工具PostMark和Bonnie++对它们进行了测试,给出了详细的性能分析,对Linux服务器应用具有重要的参考价值。
(), 硕士研究生
张文江,硕士研究生,主要从事操作系统的研究。
(), 副研究员
吴庆波,副研究员,长期从事操作系统的研究。
一、概述所谓日志文件系统是在传统文件系统的基础上,加入文件系统更改的日志记录,它的设计思想是:跟踪记录文件系统的变化,并将变化内容记录入日志。日志文件系统在磁盘分区中保存有日志记录,写操作首先是对记录文件进行操作,若整个写操作由于某种原因(如系统掉电)而中断,系统重启时,会根据日志记录来恢复中断前的写操作。在日志文件系统中,所有的文件系统的变化都被记录到日志,每隔一定时间,文件系统会将更新后的元数据及文件内容写入磁盘。在对元数据做任何改变以前,文件系统驱动程序会向日志中写入一个条目,这个条目描述了它将要做些什么,然后它修改元数据。目前Linux的日志文件系统主要有:在Ext2基础上开发的Ext3,根据面向对象思想设计的ReiserFS,由SGI IRIX系统移植过来的XFS,由IBM AIX系统移植过来的JFS,其中EXT3完全兼容EXT2,其磁盘结构和EXT2完全一样,只是加入日志技术;而后三种文件系统广泛使用了B树以提高文件系统的效率。二、Ext3Ext3文件系统是直接从Ext2文件系统发展而来,目前Ext3文件系统已经非常稳定可靠,它完全兼容Ext2文件系统,用户可以平滑地过渡到一个日志功能健全的文件系统。Ext3日志文件系统的思想就是对文件系统进行的任何高级修改都分两步进行。首先,把待写块的一个副本存放在日志中;其次,当发往日志的I/O 数据传送完成时(即数据提交到日志),块就写入文件系统。当发往文件系统的I/O 数据传送终止时(即数据提交给文件系统),日志中的块副本就被丢弃。<h3 id="N1 Ext3日志模式Ext3既可以只对元数据做日志,也可以同时对文件数据块做日志。具体来说,Ext3提供以下三种日志模式:日志(Journal )
文件系统所有数据和元数据的改变都记入日志。这种模式减少了丢失每个文件所作修改的机会,但是它需要很多额外的磁盘访问。例如,当一个新文件被创建时,它的所有数据块都必须复制一份作为日志记录。这是最安全和最慢的Ext3日志模式。预定(Ordered )
只有对文件系统元数据的改变才记入日志。然而,Ext3文件系统把元数据和相关的数据块进行分组,以便把元数据写入磁盘之前写入数据块。这样,就可以减少文件内数据损坏的机会;例如,确保增大文件的任何写访问都完全受日志的保护。这是缺省的Ext3 日志模式。写回(Writeback )
只有对文件系统元数据的改变才记入日志;这是在其他日志文件系统发现的方法,也是最快的模式。2.2 日志块设备(JBD)Ext3 文件系统本身不处理日志,而是利用日志块设备(Journaling Block Device)或叫JBD 的通用内核层。Ext3文件系统调用JDB例程以确保在系统万一出现故障时它的后续操作不会损坏磁盘数据结构。Ext3 与JDB 之间的交互本质上基于三个基本单元:日志记录,原子操作和事务。日志记录本质上是文件系统将要发出的低级操作的描述。在某些日志文件系统中,日志记录只包括操作所修改的字节范围及字节在文件系统中的起始位置。然而,JDB 层使用的日志记录由低级操作所修改的整个缓冲区组成。这种方式可能浪费很多日志空间(例如,当低级操作仅仅改变位图的一个位时),但是,它还是相当快的,因为JBD 层直接对缓冲区和缓冲区首部进行操作。修改文件系统的任一系统调用都通常划分为操纵磁盘数据结构的一系列低级操作。如果这些低级操作还没有全部完成系统就意外宕机,就会损坏磁盘数据。为了防止数据损坏,Ext3文件系统必须确保每个系统调用以原子的方式进行处理。原子操作是对磁盘数据结构的一组低级操作,这组低级操作对应一个单独的高级操作。出于效率的原因,JBD 层对日志的处理采用分组的方法,即把属于几个原子操作处理的日志记录分组放在一个单独的事务中。此外,与一个处理相关的所有日志记录都必须包含在同一个事务中。一个事务的所有日志记录都存放在日志的连续块中。JBD层把每个事务作为整体来处理。例如,只有当包含在一个事务的日志记录中的所有数据提交给文件系统时才回收该事务所使用的块。三、ReiserFSReiserFS是一个非常优秀的文件系统,其开发者非常有魄力,整个文件系统完全是从头设计的。目前,ReiserFS可轻松管理上百G的文件系统,这在企业级应用中非常重要。ReiserFS 是根据面向对象的思想设计的,由语义层(semantic layer)和存储层(storage layer)组成。语义层主要是对对象命名空间的管理及对象接口的定义,以确定对象的功能。存储层主要是对磁盘空间的管理。语义层与存储层是通过键(key)联系的。语义层通过对对象名进行解析生成键,存储层通过键找到对象在磁盘上存储空间,键值是全局唯一的。<h3 id="N1 语义层主要接口1) 文件接口
每个文件拥有一个接口ID,此ID标识一个方法集,此方法集包含访问ReiserFS 文件的所有接口。2) 属性接口
ReiserFS实现了一种新接口,把文件的每一种属性当做一个文件,属性的值就是此文件的内容,以实现对文件属性的目录式访问。3) hash接口
目录是文件名到文件的映射表,ReiserFS是通过B+树来实现这张映射表。由于文件名是变长的,而且有时文件名会很长,所以文件名不适合作为键值,故引入了Hash函数来产生键值。4) 安全接口
安全接口处理所有的安全性检查,通常是由文件接口触发的。下面以读文件为例:文件接口的read 方法在读入文件数据之前会调用安全接口的read chech 方法来来进行安全性检查,而后者又会调用属性文件的read方法把文件属性读入以便检查。5) 项(Item)接口
项接口主要是一些对项进行平衡处理的方法,包括:项的拆分,项的评估,项的覆写,项的追加,项的删除,插入及查找。 6) 键分配(key Assignment)接口
当把一个键分配给一个项时,键分配接口就会被触发。每一种项都有一个与其对应的键分配方法。<h3 id="N1 存储层ReiserFS是以B+树来存储数据的,其结构如图:图1:ReiserFS B+ 树在B+树中的各个结点中有一个称为项(Item)的数据结构。项是一个数据容器,一个项只属于一个结点,是结点管理空间的基本单位。如图所示,一个项包括以下内容:1) Item_body:项的数据域2) Item_key:
项的键值3) Item_offset:数据域的起点在结点中的偏移量4) Item_length: 数据域的长度5) Item_Plugin_id:项接口ID。图2: ReiserFS 项结构ReiserFS设计了多种不同的项以存储不同的数据,主要有以下几种:1) static_stat_data: 静态统计数据,包括文件的所有者,访问权限,创建时间,最近修改时间,链接数等2) cmpnd_dir_item: 包含各个目录项3) extend_pointers:
指向一个盘区(extend)4) node_pointers:
指向一个结点5) bodies:
包含的是文件的小部分数据
3.3 ReiserFS日志与ext3一样,ReiserFS也有三种日志模式,即journal,ordered,writeback。同时,ReiserFS引入了两种日志优化方法:copy-on-capture和steal-on-capture。copy-on-capture:当一个事务要修改的块在另一个未提交的事务中时,就把这个块复制一份,这样这两个事务就可以并发进行了。steal-on-capture:当一个块被多个事务修改时,只有最晚提交的那个事务才把这个块实际写入文件系统,其他事务都不写这个块。四、XFSXFS 是一种高性能的64 位文件系统,由SGI 公司为了替代原有的EFS 文件系统而开发的。XFS 通过保持cache 的一致性、定位数据和分布处理磁盘请求来提供对文件系统数据的低延迟、高带宽的访问。目前SGI已经将XFS文件系统从IRIX移植到Linux。4.1 分配组(allocation groups)当创建 XFS 文件系统时,底层块设备被分割成八个或更多个大小相等的线性区域(region),用户可以将它们想象成"块"(chunk)或者"线性范围(range)",在 XFS 中,每个区域称为一个"分配组"。分配组是唯一的,因为每个分配组管理自己的索引节点(inode)和空闲空间,实际上是将这些分配组转化为一种文件子系统,这些子系统透明地存在于 XFS 文件系统内。有了分配组,XFS 代码将允许多个线程和进程持续以并行方式运行,即使它们中的许多线程和进程正在同一文件系统上执行大规模 IO 操作。因此,将 XFS 与某些高端硬件相结合,将获得高性能而不会使文件系统成为瓶颈。分配组在内部使用高效的 B+树来跟踪主要数据,具有优越性能和极大的可扩展性。4.2 日志记录XFS 也是一种日志记录文件系统,它允许意外重新引导后的快速恢复。象 ReiserFS 一样,XFS 使用逻辑日志;它不象 ext3 那样将文字文件系统块记录到日志,而是使用一种高效的磁盘格式来记录元数据的变动。就 XFS 而言,逻辑日志记录是很适合的;在高端硬件上,日志经常是整个文件系统中争用最多的资源。通过使用节省空间的逻辑日志记录,可以将对日志的争用降至最小。另外,XFS 允许将日志存储在另一个块设备上,例如,另一个磁盘上的一个分区。这个特性很有用,它进一步改进了 XFS 文件系统的性能。4.3 延迟分配延迟分配是 XFS 独有的特性,它是查找空闲空间区域并用于存储新数据的过程。通过延迟分配,XFS 赢得了许多机会来优化写性能。到了要将数据写到磁盘的时候,XFS 能够以这种优化文件系统性能的方式,智能地分配空闲空间。尤其是,如果要将一批新数据添加到单一文件,XFS 可以在磁盘上分配一个单一、相邻区域来储存这些数据。如果 XFS 没有延迟它的分配决定,那么,它也许已经不知不觉地将数据写到了多个非相邻块中,从而显著地降低了写性能。但是,因为 XFS 延迟了它的分配决定,所以,它能够一下子写完数据,从而提高了写性能,并减少了整个文件系统的碎片。在性能上,延迟分配还有另一个优点。在要创建许多"短命的"临时文件的情况下,XFS 可能根本不需要将这些文件全部写到磁盘。因为从未给这些文件分配任何块,所以,也就不必释放任何块,甚至根本没有触及底层文件系统元数据。五、JFSJFS 由IBM 公司开发,最初出现在AIX 操作系统之上,它提供了基于日志的字节级、面向事务的高性能文件系统。它具有可伸缩性和健壮性,与非日志文件系统相比,它的优点是其快速重启能力:JFS 能够在几秒或几分钟内就把文件系统恢复到一致状态。JFS 是完全 64 位的文件系统。所有 JFS 文件系统结构化字段都是 64 位大小。这允许 JFS 同时支持大文件和大分区。为了支持 DCE DFS(分布式计算环境分布式文件系统),JFS 将磁盘空间分配池(称为聚集)的概念, 与可安装的文件系统子树(称为文件集)的概念分开。每个分区只有一个聚集;每个聚集可能有多个文件集。在第一个发行版中,JFS 仅支持每个聚集一个文件集;但是,所有元数据都已设计成适用于所有情况。如图3所示,聚集开始部分是32K的保留区,紧随其后的是聚集主超级块。超级块包含聚集的信息,例如:聚集的大小、分配组的大小、聚集块的尺寸等等。超级块位于固定位置,这使得 JFS 不依赖任何其它信息,就能够找到它们。在聚集中还有一个重要的结构是聚集索引结点表(Aggregate Inode Table)以及用于其映射的聚集索引结点分配映射表(Aggregate Inode Allocation Map)。AIT表中的inode 0 保留,inode 1 描述聚集本身,inode 2 描述聚集块映射表(block map), inode 3 描述安装时的内嵌日志,inode 4 描述在聚集格式化期间发现的坏块,保留inode 5 到 15 以备将来扩展。 从inode 16 开始,每个inode代表一个文件集。文件集中也有索引结点表以及用于其映射的索引结点分配映射表,文件集中的inode 描述文件集中的每一个文件。图3
JFS磁盘结构JFS 使用基于盘区的寻址结构,连同主动的块分配策略,产生紧凑、高效、可伸缩的结构,以将文件中的逻辑偏移量映射成磁盘上的物理地址。盘区是象一个单元那样分配给文件的相连块序列,可用一个由 &逻辑偏移量,长度,物理地址& 组成的三元组来描述。寻址结构是一棵 B+ 树,该树由盘区描述符(上面提到的三元组)填充,根在 inode 中,键为文件中的逻辑偏移量。JFS 按需为磁盘 inode 动态地分配空间,同时释放不再需要的空间。这一支持避开了在文件系统创建期间,为磁盘 inode 保留固定数量空间的传统方法,因此用户不再需要估计文件系统包含的文件和目录最大数目。另外,这一支持使磁盘 inode 与固定磁盘位置分离。JFS 提供两种不同的目录组织。第一种组织用于小目录,并且在目录的 inode 内存储目录内容。这就不再需要不同的目录块 I/O,同时也不再需要分配不同的存储器。最多可有 8 个项可直接存储在 inode 中,这些项不包括自己(.)和父(..)目录项,这两个项存储在 inode 中不同的区域内。第二种组织用于较大的目录,用按名字键控的 B+ 树表示每个目录。与传统无序的目录组织比较,它提供更快的目录查找、插入和删除能力。六、性能测试6.1 测试环境6.2测试工具所用的测试工具是Postmark和Bonnie++。Postmark主要用于测试文件系统在邮件系统或电子商务系统中性能,这类应用的特点是:需要频繁、大量地存取小文件。而Bonnie++主要测试大文件的IO性能。<h3 id="N1 测试结果分析下面将详细分析用上述两种测试工具在各种测试参数配置下的结果。图4
PostMark 小文件图 4是PostMark测试小文件的结果,其参数是文件大小50B增至1K, 同一目录下的文件数从5k至20k,事务总数为25k。从图中我们可以看出:1.
不论是Ext3 还是ReiserFS,在三种日志模式中,写回(writeback)最快,预定(ordered)次之,日志(journal)最慢。2.
在各种文件系统中,ReiserFS 的写回和预定模式是最快的,且随着文件数的增加事务处理速度下降的也很慢。3. Ext3在文件数较少时,事务处理速度也比较快,但当文件数超过10k后,速度就比较慢了。4. XFS和JFS的速度较慢,但随着文件数的增加,速度下降的比较缓慢。图5
PostMark 大文件图5是PostMark测试大文件的结果,其参数是文件大小1k至16K,同一目录下的文件数从5k增至20k,事务总数为25k时的测试结果。从图中我们可以看出:1. 在处理大文件时,当文件数达到15k时,各种文件系统处理能力都较差。2. 当文件数在小于10k时,ReiserFS的写回、预定模式和EXT3的写回模式性能是比较好的。但这两种文件系统的全日志模式都比较差。3. XFS文件系统的性能居中,JFS文件系统的性能最差。图6:Bonnie++顺序写的速率图7:Bonnie++顺序写时CPU利用率图6是Bonnie++对文件大小分别为1G,2G,4G顺序写的性能比较,图7是其CPU的利用率比较。从上述两图中我们可以看出:1. 除了Ext3和ReiserFS的Journal模式的性能较差外,其他几种模式和XFS、JFS写磁盘的速率相当。2. 从CPU利用率来看,各种文件系统的CPU利用率都比较低,而且随着数据量的增大CPU的利用率降低。3. Journal模式的CPU利用率比其他两种模式要低。图8:Bonnie++ 顺序创建文件图9:Bonnie++ 随机创建文件图10:Bonnie++ 随机删除文件图11:Bonnie++ 随机删除文件时的CPU利用率图8至图11是Bonnie++对创建和删除文件的性能比较,文件数由50k增至400k。从中可以看出:1. 不管是创建文件,还是删除文件,Ext3和ReiserFS的三种日志模式之间的性能差别可以忽略不计。这主要是由于创建、删除文件都是对元数据的操作,而对元数据的操作三种模式之间本身就没有什么区别。2. 不管是创建文件,还是删除文件,Ext3的性能都比较差;ReiserFS的性能是最好的,特别是文件数少于100k时。这主要是由于Ext3是基于Ext2的,其目录项是线性组织的,而其他文件系统都是树形结构。3. 从CPU的利用率来看,除Ext3的利用率交给外,其他几种文件系统的利用率都很低。综上所述,我们可以得出以下结论:1.
在小型系统,如:邮件系统或小规模的电子商务系统应用时,ReiserFS和Ext3 的性能是比较好的。但由于Ext3的目录项是线型的,而ReiserFS的目录项是树型的,故当目录下文件较多时,ReiserFS的性能更优。2. 在对于上G的这种大文件做I/O时,各种文件系统间的性能差距很小,性能瓶颈往往在磁盘上。3. 虽然XFS和JFS在设计结构上都比较好,但它们主要是针对大中型系统的,在小型系统中由于硬件的原因性能发挥不明显。4. 全日志模式和预定、写回这两种模式相比,性能差距是比较大的;而预定和写回之间的性能差距不大。所以性能和安全兼顾时,文件系统的缺省安全模式,即预定模式是比较好的选择。
参考资料 Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, O'Reilly and Associates 2001Adam Sweeney, Doug Doucette, et al,"Scalability in the XFS File System," Proceedings of the 1996 Usenix Annual Technical Conference,San Diego, Cal.,Ricardo Galli, "Journal File Systems in Linux,"Upgrade, Vol. II, No. 6 (December 2001)Stephen Tweedie, "Ext3, Journaling Fil esystem,"Ottawa Linux Symposium 2000
developerWorks: 登录
标有星(*)号的字段是必填字段。
保持登录。
单击提交则表示您同意developerWorks 的条款和条件。 查看条款和条件。
在您首次登录 developerWorks 时,会为您创建一份个人概要。您的个人概要中的信息(您的姓名、国家/地区,以及公司名称)是公开显示的,而且会随着您发布的任何内容一起显示,除非您选择隐藏您的公司名称。您可以随时更新您的 IBM 帐户。
所有提交的信息确保安全。
选择您的昵称
当您初次登录到 developerWorks 时,将会为您创建一份概要信息,您需要指定一个昵称。您的昵称将和您在 developerWorks 发布的内容显示在一起。昵称长度在 3 至 31 个字符之间。
您的昵称在 developerWorks 社区中必须是唯一的,并且出于隐私保护的原因,不能是您的电子邮件地址。
标有星(*)号的字段是必填字段。
(昵称长度在 3 至 31 个字符之间)
单击提交则表示您同意developerWorks 的条款和条件。 .
所有提交的信息确保安全。
IBM PureSystems(TM) 系列解决方案是一个专家集成系统
通过学习路线图系统掌握软件开发技能
软件下载、试用版及云计算
static.content.url=/developerworks/js/artrating/SITE_ID=10Zone=LinuxArticleID=93836ArticleTitle=Linux日志文件系统及性能分析publish-date=您现在的位置: >
Linux[浏览次数:约10361次]
实时 Linux 架构简介
  实时系统指系统的计算正确性不仅取决于计算的逻辑正确性,还取决于产生结果的时间。如果未满足系统的时间约束,则认为系统失效。换句话说,系统面对变化的负载(从最小到最坏的情况)时必须确定性地保证满足时间要求。
  注意,实时性与速度关系不大:它与可预见性有关。例如,使用快速的现代处理器时,Linux 可以提供 20 μ 微秒的典型中断响应,但有时候响应会变得很长。这是一个基本的问题:并不是 Linux 不够快或效率不够高,而是因为它不能提供确定性。
  当中断到达时(event),CPU 发生中断并转入中断处理。执行一些工作以确定发生了什么事件,然后执行少量工作分配必需的任务以处理此事件(上下文切换)。中断到达与分发必需任务之间的时间(假设分配的是优先级最高的任务)称为响应时间。对于实时性要求,响应时间应是确定的并应当在已知的最坏情况的时间内完成。因此,对于某些高安全性的场合,操作系统应快速地分配任务,并且不允许其他非实时处理进行干扰。晚一秒钟响应比没有响应的情况更糟糕。
  除为中断处理提供确定性外,实时处理也需要支持周期性间隔的任务调度。大量控制系统要求周期性采样与处理。某个特定任务必须按照固定的周期(p)执行,从而确保系统的稳定性。在某些控制场合下,为了保持控制系统的正常工作,传感器的采样与控制必须按照一定的周期间隔。这意味着必须抢占其他处理,以便特定任务能按照期望的周期执行。
  能够在指定的期限完成实时任务(即便在最坏的处理负载下也能如此)的操作系统称为硬实时 系统。但并不是任何情况下都需要硬实时支持。如果操作系统在平均情况下能支持任务的执行期限,则称它为软实时 系统。硬实时系统指超过截止期限后将造成灾难性后果(例如展开气囊过晚或制动压力产生的滑行距离过长)的系统。软实时系统超过截止期限后并不会造成系统整体失败(如丢失视频中的一帧)。
  Linux 架构支持通过以下几种方式实现硬实时。
  1. 瘦内核方法
  瘦内核(或微内核)方法使用了第二个内核作为硬件与 Linux 内核间的抽象接口。非实时 Linux 内核在后台运行,作为瘦内核的一项低优先级任务托管全部非实时任务。实时任务直接在瘦内核上运行。
  瘦内核主要用于(除了托管实时任务外)中断管理。瘦内核截取中断以确保非实时内核无法抢占瘦内核的运行。这允许瘦内核提供硬实时支持。
  虽然瘦内核方法有自己的优势(硬实时支持与标准 Linux 内核共存),但这种方法也有缺点。实时任务和非实时任务是独立的,这造成了调试困难。而且,非实时任务并未得到 Linux 平台的完全支持(瘦内核执行称为瘦 的一个原因)。
  使用这种方法的例子有 RTLinux。
  2. 超微内核方法
  瘦内核方法依赖于包含任务管理的最小内核,而超微内核法对内核进行更进一步的缩减。通过这种方式,它不像是一个内核而更像是一个硬件抽象层(HAL)。超微内核为运行于更高级别的多个操作系统提供了硬件资源共享。
  这种方法和运行多个操作系统的虚拟化方法有一些相似之处。使用这种方法的情况下,超微内核在实时和非实时内核中对硬件进行抽象。这与 hypervisor 从客户(guest)操作系统对裸机进行抽象的方式很相似。
  3. 资源内核法
  这种方法为内核增加一个模块,为各种资源提供预留(reservation)。这种机制保证了对时分复用(time-multiplexed)系统资源的访问(CPU、网络或磁盘带宽)。这些资源拥有多个预留参数,如循环周期、需要的处理时间(也就是完成处理所需的时间),以及截止时间。
  资源内核提供了一组应用程序编程接口(API),允许任务请求这些预留资源。然后资源内核可以合并这些请求,使用任务定义的约束定义一个调度,从而提供确定的访问(如果无法提供确定性则返回错误)。通过调度算法,内核可以处理动态的调度负载。
  资源内核法实现的一个示例是 CMU 公司的 Linux/RK,它把可移植的资源内核集成到 Linux 中作为一个可加载模块。这种实现演化成商用的 TimeSys Linux/RT 产品。
常用Linux命令
  Linux的系统管理主要在控制终端下进行,通过使用命令行的方式进行管理。Linux的文件命令可以完成各种复杂的工作,例如对目录进行复制、移动和链接,搜索和查找文件和目录,阅读、显示或打印文件内容等操作。Linux操作系统提供的命令很多,但用户日常使用的命令却很有限。一些在日常工作中最常用的Linux命令:
  熟练使用文件管理命令
  熟练使用磁盘管理命令
  熟练使用文件搜索和压缩/解压缩命令
  熟练使用系统管理命令
  区分Linux命令和DOS命令
Linux与DOS命令
  Linux系统下的shell命令要比Windows下的DOS命令重要得多,因为完全可以不使用DOS命令而在Windows系统下完成所有的操作,但是在Linux系统下,很多shell命令在X Window图形窗口下是无法完成的,并且shell命令要比DOS命令更强大,相对也较复杂。
  两者的区别主要有以下几点。
  DOS的文件名必须遵循7.3规则,而Linux则支持ext3文件系统,可以支持长文件名,并且可以使用更多的“.”和字符。例如,abc.123.c在Linux系统下是一个合法的文件名。在Linux系统下,英文字母的大小写是不一样的。这个规则对于shell命令也是有效的。Linux下的文件如果是以“.”作为文件名的第一个字符,将会被认为是隐藏文件,使用ls命令是看不到这类文件的(用ls Ca可以看到隐藏文件)。
  Linux系统下的路径是用“/”分隔开的,而DOS下则用“\”分隔。Linux系统没有定义可执行文件的扩展名必须为.exe、.com、.bat等。用户使用命令ls CF可看到有的文件名后加了一个*号,那么这个文件就是可执行文件。
  对于命令参数的应用也有不同之处。DOS下的参数和命令之间用“/”分隔,而在Linux系统下,命令和参数之间用“-”分隔,例如ls Cl和dir/w。关于Linux与DOS的异同见表所示。
  a& Gedit是图形化文本编辑器,也可以使用其他文本编辑器来代替Gedit,例如Emacs和vi等。
  b& 这个命令为DOS文件系统下格式化软盘的命令。
  c& 某些命令还可以使用info。
  d& more分页器也可以用来在文件中逐页查看。
  e& mv命令可以转移文件或重新命名同一目录下的文件。如果想重新命名文件,可把这个文件“转移”到同一目录中的新名称。
Linux 进程创建
  在 Linux 内核内,进程是由相当大的一个称为 task_struct 的结构表示的。此结构包含所有表示此进程所必需的数据,此外,还包含了大量的其他数据用来统计(accounting)和维护与其他进程的关系(父和子)。下面给出了 task_struct 的一小部分。task_struct 位于 ./linux/include/linux/sched.h。
  struct task_struct {
  void *
  int prio, static_
  struct list_
  struct mm_struct *mm, *active_
  struct task_struct *real_
  char comm[TASK_COMM_LEN];
  struct thread_
  struct files_struct *
  在task_struct中,可以看到几个预料之中的项,比如执行的状态、堆栈、一组标志、父进程、执行的线程(可以有很多)以及开放文件。对其做简单声明如下
  &1& state 变量是一些表明任务状态的比特位。最常见的状态有:
  1.TASK_RUNNING 表示进程正在运行,或是排在运行队列中正要运行
  2.TASK_INTERRUPTIBLE 表示进程正在休眠
  3.TASK_UNINTERRUPTIBLE 表示进程正在休眠但不能叫醒
  4.TASK_STOPPED 表示进程停止
  注:这些标志的完整列表可以在 ./linux/include/linux/sched.h 内找到。
  &2& flags 定义了很多指示符,表明进程是否正在被创建(PF_STARTING)或退出(PF_EXITING),或是进程当前是否在分配内存(PF_MEMALLOC)。
  &3& 每个进程都会被赋予优先级(称为 static_prio),但进程的实际优先级是基于加载以及其他几个因素动态决定的。优先级值越低,实际的优先级越高。
  &4& tasks 字段提供了链接列表的能力。它包含一个 prev 指针(指向前一个任务)和一个 next 指针(指向下一个任务)。
  &5& 进程的地址空间由 mm 和 active_mm 字段表示。mm 代表的是进程的内存描述符,而 active_mm 则是前一个进程的内存描述符(为改进上下文切换时间的一种优化)。
  &6& 可执行程序的名称(不包含路径)占用 comm(命令)字段。
  &7& thread_struct 则用来标识进程的存储状态。此元素依赖于 Linux 在其上运行的特定架构,在 ./linux/include/asm-i386/processor.h 内有这样的一个例子。在此结构内,可以找到该进程自执行上下文切换后的存储(硬件注册表、程序计数器等)。
  在很多情况下,进程都是动态创建并由一个动态分配的 task_struct 表示。当然 init 进程例外,它总是存在并由一个静态分配的 task_struct 表示。
  Linux 内所有进程的分配有两种方式。第一种方式是通过一个哈希表,由 PID 值进行哈希计算得到;第二种方式是通过双链循环表。循环表非常适合于对任务列表进行迭代。由于列表是循环的,没有头或尾;但是由于 init_task 总是存在,所以可以将其用作继续向前迭代的一个锚点。
  任务列表无法从用户空间访问,但该问题很容易解决,方法是以模块形式向内核内插入代码。例如通过如下代码,它会迭代任务列表并会提供有关每个任务的少量信息(name、pid 和 parent 名)。
  struct task_struct *task = &init_
  /* Walk through the task list, until we hit the init_task again */
  printk( KERN_INFO "*** %s [%d] parent %s\n",
  task-&comm, task-&pid, task-&parent-&comm );
  } while ( (task = next_task(task)) != &init_task );
  注意,还可以标识当前正在运行的任务。Linux 维护一个称为 current 的符号,代表的是当前运行的进程(类型是 task_struct)。为此可使用如下代码:
  printk( KERN_INFO, "Current task is %s [%d]”, current-&comm, current-&pid );
  Linux创建用户空间进程的情况与内核空间进程类似。二者底层机制是一致的,因为最终都会依赖于一个名为 do_fork 的函数来创建新进程。
  在创建内核线程时,内核会调用一个名为 kernel_thread 的函数(参见 ./linux/arch/i386/kernel/process.c),此函数执行某些初始化后会调用 do_fork。
  在用户空间,一个程序会调用 fork,这会导致对名为 sys_fork 的内核函数的系统调用(参见 ./linux/arch/i386/kernel/process.c)。
  do_fork 是进程创建的基础。可以在 ./linux/kernel/fork.c 内找到 do_fork 函数(以及相关函数 copy_process)。
  do_fork 函数首先调用 alloc_pidmap,该调用会分配一个新的 PID。接下来,do_fork 检查调试器是否在跟踪父进程。如果是,在 clone_flags 内设置 CLONE_PTRACE 标志以做好执行 fork 操作的准备。之后 do_fork 函数还会调用 copy_process,向其传递这些标志、堆栈、注册表、父进程以及最新分配的 PID。
  新的进程在 copy_process 函数内作为父进程的一个副本创建。此函数能执行除启动进程之外的所有操作,启动进程在之后进行处理。copy_process 内的第一步是验证 CLONE 标志以确保这些标志是一致的。如果不一致,就会返回 EINVAL 错误。接下来,询问 Linux Security Module (LSM) 看当前任务是否可以创建一个新任务。
  接下来,调用 dup_task_struct 函数(./linux/kernel/fork.c ),这会分配一个新 task_struct 并将当前进程的描述符复制到其内。在新的线程堆栈设置好后,一些状态信息也会被初始化,并且会将控制返回给 copy_process。控制回到 copy_process 后,除了其他几个限制和安全检查之外,还会执行一些常规管理,包括在新 task_struct 上的各种初始化。之后,会调用一系列复制函数来复制此进程的各个方面,比如复制开放文件描述符(copy_files)、复制符号信息(copy_sighand 和 copy_signal)、复制进程内存(copy_mm)以及最终复制线程(copy_thread)。
  之后,这个新任务会被指定给一个处理程序,同时对允许执行进程的处理程序进行额外的检查(cpus_allowed)。新进程的优先级从父进程的优先级继承后,执行一小部分额外的常规管理,而且控制也会被返回给 do_fork。在此时,新进程存在但尚未运行。do_fork 函数通过调用 wake_up_new_task 来修复此问题。此函数(./linux/kernel/sched.c )初始化某些调度程序的常规管理信息,将新进程放置在运行队列之内,然后将其唤醒以便执行。最后,一旦返回至 do_fork,此 PID 值即被返回给调用程序,进程完成。
linux设备号之操作
  在Linux设备驱动中,设备号设一个很重要的概念和变量。不论是主设备号,还是次设备号,在设备驱动中都占据了很重要的地位。那么他在Kernel中是如何操作的?这个数据结构都是通过那些函数可以很容易的在我们写Linux设备驱动模块时被我们所使用呢?
  在include/linux/type.h文件中我们能看到一个关于dev_t的定义如下:
  typedef __u32 __kernel_dev_t;
  typedef __kernel_fd_set fd_
  typedef __kernel_dev_t dev_t;
  从这个定义中我们能看到dev_t是一个无符号的32位的整型。
  首先我们需要说明的是,在linux中主次设备号是放置在一个无符号的32位的整型中,那么这32位整型对于主次设备号如何分配呢?
  从源代码中我们可以看到,主设备号占据12个位,次设备好占据20位。这在一定的时期内,主次设备号是完全可以满足系统需要的。
  同时在include/linux/kdev_t.h文件中我们能发现很多函数或者宏定义的操作都是针对dev_t的。
  具体可以看到我们经常用到的MAJOR(dev)、MINOR(dev)、MKDEV(ma,mi)。
  下面我们就具体分析下这三个我们经常用到的宏定义:
  #define MINORBITS 20
  #define MINORMASK ((1U && MINORBITS) - 1)
  #define MAJOR(dev) ((unsigned int) ((dev) && MINORBITS))
  从这个宏定义中我们可以看到其把无符号的32位的整型做位操作运算:右移20位。
  在C语言中如果是右移,那么左边补0,这样在这32位的整型中通过这个操作就只保留了原先第19位到31位的有效值,而这也正是我们所需要的。
  下面我们看下MINOR这个宏定义:
  #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
  要明白这个宏定义的具体是多少,我们需要首先明白宏定义MINORMASK是什么?
  我们从前面的宏定义中,我们看到:
  #define MINORMASK ((1U && MINORBITS) - 1)
  MINORMASK 是1U也就是1左移位20个字节,二进制的话就是,也就是1后面带20个0。
  然后在减1呢,就成了二进制,也就是20个1,十六进制的话是0xFFFFF。
  好现在我们知道MINORMASK是20个1,也就是十六进制0xFFFFF,那么我们在与dev_t做一个位的与运算,就把32位中的前12为置0,保留其后面的20位,也正是我们想要的表是设备次设备号的后20个字节。
  好下面我们看下如果我们知道了主设备号、次设备号,我们如何生成一个dev_t的数据结构。
  宏定义:
  #define MKDEV(ma,mi) (((ma) && MINORBITS) | (mi))
  明白了前面我们所说的,其实这个就比较简单了,把主设备号左移20位,然后与上次设备号,就是我们所需要的dev_t的数据结构。
  那么我们前面所说的关于dev_t的操作是新的2.6.x系列中的,在之前的2.4.x系列中,由于对设备号的总共就16个字节,也就是一个短整型,那么一个系统中所能拥有的设备号就是及其有限的了。
  我们看下在老版本中的内核中他们的表示:
  #define MAJOR(dev) ((dev)&&8)
  #define MINOR(dev) ((dev) & 0xff)
  #define MKDEV(ma,mi) ((ma)&&8 | (mi))
  从中我们可以看出,他是以8为为分界线,高8位为主设备号,低8位为次设备号,那么一个8位所能表示的最多也即是255个数值,那么当我们系统中如果拥有的设备大于这个数值的时候,在老版本的内核中就没有办法处理了。
  在内核实现中还实现了两个打印的函数,其实也是宏定义:
  #define print_dev_t(buffer, dev)&&&&&&&&&&&&&&&&&&&&&&& \
  sprintf((buffer), "%u:%u\n", MAJOR(dev), MINOR(dev))
  #define format_dev_t(buffer, dev)&&&&&&&&&&&&&&&&&&&&&&& \
  ({&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& \
  sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev));&&&&&&& \
  &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& \
  从代码中我们可以看出。
  第一就是把设备的主设备号和次设备号以字符串的形式存放到buffer中,在使用这个宏定义的时候需要注意的是:
  buffer需要提前开辟空间,而且还需要是够用的空间。
  第二所实现的功能和第一个很类似。这儿我们就不具体说明,请参考第一个宏定义的实现。
  在这个文件中还有很多的函数,这些函数的主要功能就是和老版本的内核代码兼容而产生的,比如:
  static inline int old_valid_dev(dev_t dev)
  return MAJOR(dev) & 256 && MINOR(dev) & 256;
  此函数是判断一个dev_t是否可以转换成旧制的dev_t。
  static inline u16 old_encode_dev(dev_t dev)
  return (MAJOR(dev) && 8) | MINOR(dev);
  把32位的设备号转换成16位的旧制的设备号。
  其中主要操作为:首先把主设备号左移8位,为次设备好空出8位的位置,然后与上次设备号。
  在使用这个函数的时候需要注意的就是需要首先判断下32位的设备号是否可以有效的转换成16位的设备号。
  static inline dev_t old_decode_dev(u16 val)
  return MKDEV((val && 8) & 255, val & 255);
  上面函数的反操作。
  主设备号右移8位,然后与上255,即8个1。也就是取此变量的低8位,
  次设备号与上255,也是取此变量的低8位即可。
  static inline u32 new_encode_dev(dev_t dev)
  unsigned major = MAJOR(dev);
  unsigned minor = MINOR(dev);
  return (minor & 0xff) | (major && 8) | ((minor & ~0xff) && 12);
  ^^^^^^^^^^^^^
  次设备号取其低8位 ^^^^^^^^^^^^^^
  主设备号左移8位。
  ^^^^^^^^^^^^^^^^^^^^^^^
  次设备号低8位清零,左移12位。
  static inline dev_t new_decode_dev(u32 dev)
  unsigned major = (dev & 0xfff00) && 8;
  unsigned minor = (dev & 0xff) | ((dev && 12) & 0xfff00);
  return MKDEV(major, minor);
Linux根文件系统介绍
  根文件系统首先是一种文件系统,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所mount的第一个文件系统,内核代码映像文件保存在根文件系统中,而系统引导启动程序会在根文件系统挂载之后从中把一些基本的初始化脚本和服务等加载到内存中去运行。
  我们首先从主机上所安装的Linux操作系统中了解一些根文件系统的信息。比如在笔者工作的Linux桌面系统中可以得到下面的结果:
  # mount
  /dev/hda2 on / type ext3 (rw)
  none on /proc type proc (rw)
  /dev/hda1 on /boot type ext3 (rw)
  none on /dev/pts type devpts (rw,gid=5,mode=620)
  none on /dev/shm type tmpfs (rw)
  Filesystem&&&&&&&&&& 1K-blocks&&&&& Used Available Use% Mounted on
  /dev/hda2&&&&&&&&&&&& && 5667*&& % /
  /dev/hda1&&&&&&&&&&&&&& 101089&&&&& 9321&&&& 8*9& 10% /boot
  none&&&&&&&&&&&&&&&&&&&& 63028&&&&&&&& 0&&&& 63028&& 0% /dev/shm
  从上面的mount命令我们可以看到,在桌面Linux中,根文件系统”/”被mount到/dev/hda2设备上,文件系统类型为ext3,属性为rw即可读写。从df命令则可以得到更多根文件系统使用空间的相关信息。
  根文件系统一直以来都是所有类Unix操作系统的一个重要组成部分,也可以认为是嵌入式Linux系统区别于其他一些传统嵌入式操作系统的重要特征,它给Linux带来了许多强大和灵活的功能,同时也带来了一些复杂性。我们需要清楚的了解根文件系统的基本结构,以及细心的选择所需要的系统库、内核模块和应用程序等,并配置好各种初始化脚本文件,以及选择合适的文件系统类型并把它放到实际的存储设备的合适位置。
  根文件系统的基本目录结构
  Linux的根文件系统以树型结构组织,包含内核和系统管理所需要的各种文件和程序,一般说来根目录”/”下的顶层目录都有一些比较固定命名和用途。
  下面列出了一个Linux根文件系统中的比较常见的目录结构:
  /bin 存放二进制可执行命令的目录
  /dev 存放设备文件的目录
  /etc 存放系统管理和配置文件的目录
  /home 用户主目录,比如用户user的主目录就是/home/user,可以用~user表示
  /lib 存放动态链接共享库的目录
  /sbin存放系统管理员使用的管理程序的目录
  /tmp 公用的临时文件存储点
  /root 系统管理员的主目录
  /mnt 系统提供这个目录是让用户临时挂载其他的文件系统。
  /proc 虚拟文件系统,可直接访问这个目录来获取系统信息。
  /var 某些大文件的溢出区
  /usr 最庞大的目录,要用到的应用程序和文件几乎都在这个目录。
  对于经常使用Linux系统的读者来说,这些目录大部分应该很熟悉了。不过有几个目录对初学者来说容易混淆,如/bin,/sbin,/usr/bin和/usr/sbin。这里简单介绍一下它们的区别:/bin目录一般存放对于用户和系统来说都是必须的二进制文件,而/sbin目录要存放的是只针对系统管理的二进制文件,该目录的文件将不会被普通用户使用。相反,那些不是必要的用户二进制文件存放在/usr/bin下面,那些不是非常必要的系统管理工具放在/usr/sbin下。此外,对于一些本地的库也非常类似,对于那些要求启动系统和运行的必须命令要存放在/lib目录下,而对于其他不是必须的库存放在/usr/lib目录就可以。
  对于嵌入式Linux系统的根文件系统来说,一般可能没有上面所列出的那么复杂,比如嵌入式系统通常都不是针对多用户的,所以/home这个目录在一般嵌入式Linux中可能就很少用到,而/boot这个目录则取决于你所使用的BootLoader是否能够重新获得内核映象从你的根文件系统在内核启动之前。一般说来,只有/bin,/dev,/etc,/lib,/proc,/var,/usr这些需要的,而其他都是可选的。
Linux下的多进程编程
  (一) 理解Linux下进程的结构
  Linux下一个进程在内存里有三部份的数据,就是“数据段”,“堆栈段”和“代码段”,其实学过汇编语言的人一定知道,一般的CPU象I386,都有上述三种段寄存器,以方便操作系统的运行。“代码段”,顾名思义,就是存放了程序代码的数据,假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一
  个代码段。
  堆栈段存放的就是子程序的返回地址、子程序的参数以及程序的局部变量。而数据段则存放程序的全局变量,常数以及动态数据分配的数据空间(比如用malloc之类的函数取得的空间)。这其中有许多细节问题,这里限于篇幅就不多介绍了。系统如果同时运行数个相同的程序,它们之间就不能使用同一个堆栈段和数据 段。
  (二) 如何使用fork
  在Linux下产生新的进程的系统调用就是fork函数,这个函数名是英文中“分叉”的意思。为什么取这个名字呢?因为一个进程在运行中,如果使用了fork,就产生了另一个进程,于是进程就“分叉”了,所以这个名字取得很形象。下面就看看如何具体使用fork,这段程序演示了使用fork的基本框架:
  void main(){
  if ( fork() == 0 ) {
  /* 子进程程序 */
  for ( i = 1; i & 1000; i )
  printf("This is child process\n");
  else {
  /* 父进程程序*/
  for ( i = 1; i & 1000; i )
  printf("This is process process\n");
  程序运行后,你就能看到屏幕上交替出现子进程与父进程各打印出的一千条信息了。如果程序还在运行中 ,你用ps命令就能看到系统中有两个它在运行了。
  那么调用这个fork函数时发生了什么呢?一个程序一调用fork函数,系统就为一个新的进程准备了前述三个段,首先,系统让新的进程与旧的进程使用同一个代码段,因为它们的程序还是相同的,对于数据段和堆栈段,系统则复制一份给新的进程,这样,父进程的所有数据都可以留给子进程,但是,子进程一旦开始运行,虽然它继承了父进程的一切数据,但实际上数据却已经分开,相互之间不再有影响了,也就是说,它们之间不再共享任何数据了。而如果两个进程要共享什么数据的话,就要使用另一套函数(shmget,shmat,shmdt等)来操作。现在,已经是两个进程了,对于父进程,fork函数返回了子程序的进程号,而对于子程序,fork函数则返回零,这样,对于程序,只要判断fork函数的返回值,就知道自己是处于父进程还是子进程中。
  读者也许会问,如果一个大程序在运行中,它的数据段和堆栈都很大,一次fork就要复制一次,那么fork 的系统开销不是很大吗?其实UNIX自有其解决的办法,大家知道,一般CPU都是以“页”为单位分配空间的,象INTEL的CPU,其一页在通常情况下是4K字节大小,而无论是数据段还是堆栈段都是由许多“页”构成的, fork函数复制这两个段,只是“逻辑”上的,并非“物理”上的,也就是说,实际执行fork时,物理空间上两个进程的数据段和堆栈段都还是共享着的,当有一个进程写了某个数据时,这时两个进程之间的数据才有了区别,系统就将有区别的“页”从物理上也分开。系统在空间上的开销就可以达到最小。
  一个小幽默:下面演示一个足以"搞死"Linux的小程序,其源代码非常简单:
  void main()
  for(;;) fork();
  这个程序什么也不做,就是死循环地fork,其结果是程序不断产生进程,而这些进程又不断产生新的进程,很快,系统的进程就满了,系统就被这么多不断产生的进程"撑死了"。用不着是root,任何人运行上述程序都足以让系统死掉。哈哈,但这不是Linux不安全的理由,因为只要系统管理员足够聪明,他(或她)就可以预先给每个用户设置可运行的最大进程数,这样,只要不是root,任何能运行的进程数也许不足系统总的能运行和进程数的十分之一,这样,系统管理员就能对付上述恶意的程序了。
  (三) 如何启动另一程序的执行
  下面我们来看看一个进程如何来启动另一个程序的执行。在Linux中要使用exec类的函数,exec类的函数不止一个,但大致相同,在Linux中,它们分别是:execl,execlp,execle,execv,execve和execvp,下面我只以execlp为例,其它函数究竟与execlp有何区别,请通过manexec命令来了解它们的具体情况。
  一个进程一旦调用exec类函数,它本身就“死亡”了,系统把代码段替换成新的程序的代码,废弃原有的数据段和堆栈段,并为新程序分配新的数据段与堆栈段,唯一留下的,就是进程号,也就是说,对系统而言,还是同一个进程,不过已经是另一个程序了。(不过 exec类函数中有的还允许继承环境变量之类的信息。)
  那么如果我的程序想启动另一程序的执行但自己仍想继续运行的话,怎么办呢?那就是结合fork与exec的 使用。下面一段代码显示如何启动运行其它程序:
  char command[256];
  void main()
   /*子进程的返回数值*/
  while(1) {
  /* 从终端读取要执行的命令 */
  printf( "&" );
  fgets( command, 256, stdin );
  command[strlen(command)-1] = 0;
  if ( fork() == 0 ) {
  /* 子进程执行此命令 */
  execlp( command, command );
  /* 如果exec函数返回,表明没有正常执行命令,打印错误信息*/
  perror( command );
  exit( errorno );
  else {
  /* 父进程, 等待子进程结束,并打印子进程的返回值 */
  wait ( &rtn );
  printf( " child process return %d\n",. rtn );
  此程序从终端读入命令并执行之,执行完成后,父进程继续等待从终端读入命令。熟悉DOS和WINDOWS系统调用的朋友一定知道DOS/WINDOWS也有exec类函数,其使用方法是类似的,但DOS/WINDOWS还有spawn类函数,因为DOS是单任务的系统,它只能将“父进程”驻留在机器内再执行“子进程”,这就是spawn类的函数。 WIN32已经是多任务的系统了,但还保留了spawn类函数,WIN32中实现spawn函数的方法同前述UNIX中的方法差不多,开设子进程后父进程等待子进程结束后才继续运行。UNIX在其一开始就是多任务的系统,所以从核 心角度上讲不需要spawn类函数。
  另外,有一个更简单的执行其它程序的函数system,它是一个较高层的函数,实际上相当于在SHELL环境 下执行一条命令,而exec类函数则是低层的系统调用。
  (四) Linux的进程与Win32的进程/线程有何区别
  熟悉WIN32编程的人一定知道,WIN32的进程管理方式与UNIX上有着很大区别,在UNIX里,只有进程的概念 ,但在WIN32里却还有一个“线程”的概念,那么UNIX和WIN32在这里究竟有着什么区别呢?
  UNIX里的fork是七十年代UNIX早期的开发者经过长期在理论和实践上的艰苦探索后取得的成果,一方面, 它使操作系统在进程管理上付出了最小的代价,另一方面,又为程序员提供了一个简洁明了的多进程方法。
  WIN32里的进程/线程是继承自OS/2的。在WIN32里,“进程”是指一个程序,而“线程”是一个“进程” 里的一个执行“线索”。从核心上讲,WIN32的多进程与UNIX并无多大的区别,在WIN32里的线程才相当于UNIX 的进程,是一个实际正在执行的代码。但是,WIN32里同一个进程里各个线程之间是共享数据段的。这才是与 UNIX的进程最大的不同。
  下面这段程序显示了WIN32下一个进程如何启动一个线程:(请注意,这是个终端方式程序,没有图形界面 )
  DWORD WINAPI ChildProcess( LPVOID lpParameter ){
  for ( i = 1; i & 1000; i ) {
  printf( "This is Child Thread: %d\n", g );
  ExitThread( 0 );
  void main()
  int threadID;
  g = 0;
  CreateThread( NULL, 0, ChildProcess, NULL, 0, &threadID );
  for ( i = 1; i & 1000; i ) {
  printf( "This is Parent Thread: %d\n", g );
  在WIN32下,使用CreateThread函数创建线程,与UNIX不同,线程不是从创建处开始运行的,而是由 CreateThread指定一个函数,线程就从那个函数处开始运行。此程序同前面的UNIX程序一样,由两个线程各打印1000条信息。threadID是子线程的线程号,另外,全局变量g是子线程与父线程共享的,这就是与UNIX最大的不同之处。大家可以看出,WIN32的进程/线程要比UNIX复杂,在UNIX里要实现类似WIN32的线程并不难,只要fork以后,让子进程调用ThreadProc函数,并且为全局变量开设共享数据区就行了,但在WIN32下就无法实现类似fork的功能了。所以现在WIN32下的C语言编译器所提供的库函数虽然已经能兼容大多数UNIX的库函数, 但却仍无法实现fork。
  对于多任务系统,共享数据区是必要的,但也是一个容易引起混乱的问题,在WIN32下,一个程序员很容易忘记线程之间的数据是共享的这一情况,一个线程修改过一个变量后,另一个线程却又修改了它,结果引起程序出问题。但在UNIX下,由于变量本来并不共享,而由程序员来显式地指定要共享的数据,使程序变得 更清晰与安全。
  Linux还有自己的一个函数叫clone,这个函数是其它UNIX所没有的,而且通常的Linux也并不提供此函数(要使用此函数需自己重新编译内核,并设置CLONE_ACTUALLY_WORKS_OK选项),clone函数提供了更多的创建新进程的功能,包括象完全共享数据段这样的功能。
  至于WIN32的“进程”概念,其含义则是“应用程序”,也就是相当于UNIX下的exec了。
linux系统快速启动十大秘诀
  Linux需要重新启动是少有的。可是一旦需要,Linux启动常常是缓慢的。幸好有一些加速的办法。其中一些方法不太难。咱们瞧一瞧吧。
  1: 撤消多余的服务
  根据机器的用途,很多服务是不需要的。要是Linux只用作桌面,就不需要sendmail、httpd和另外许多服务。如果你的服务器只是Web服务器,也可以关掉许多服务。为此,可转到管理菜单,检查服务项目。只需撤消所有不想启动的服务选项。
  2: 撤消多余的内核模块
  假如你的桌面连接到以太网,就不需要装载无线内核模块。这是较为困难的任务,可能需要重新编译内核,而编译内核不是可以轻松担当的工作。为此,你大概需要内核源代码。接着,按照编译内核的标准步骤进行。不同在于你要搜查系统,撤除所有不需要的模块。
  查明系统中当前安装和运行的内核模块的最好方法是安装Bootchart。它不仅会给你一个适宜的模块清单,而且还会说明系统启动过程中发生的事情。还可以发出命令:chkconfig Clist | grep 3:on,弄清楚正在运行什么服务。一旦知道装载了什么不需要的模块,就可以在内核重新编译期间将其移除。只要这样处理,编译的内核就完全适合你的体系结构。
  3: 使用轻型窗口管理器代替GNOME或KDE
  我插入小脚印窗口管理器的原因是――它们大幅度减少图形(界面)启动时间。代替不得不额外等待启动GNOME或KDE的30到60秒,为什么不等待用于启动Enlightenment或者XFCE的2到10秒呢?它们不仅节省启动时间,还会节省内存并解救处理臃肿软体(bloatware)这种令人头痛的事。
  4: 使用基于文本的登录而不是图形登录
  我的大多数Linux机器启动run level 3而非run level 5。这个运行级别将停在文本登录模式,我就在这个地方登录并发出startx命令,开始选择桌面。图形登录模式做两件事:增加装入时间并引起头痛的问题即试图从拙劣的X windows挣脱出来。
  5: 使用轻型发行版
  不要装载重型的Fedora,为什么不试一下Gentoo、Arch或Puppy Linux呢?这些较小的发行版的启动时间比更加臃肿的Fedora(甚至Ubuntu)要快很多。在较大的发行版中,OpenSuSE声称启动最快,但我还没有亲自试验。在最新的Fedora和Ubuntu之间,Ubuntu击败Fedora的启动时间(而且是即开即用)。
  6: 使用Open BIOS
  要是你相当聪明能干,准备升级PC固件,可以考虑迁移到开源BIOS。一个附加说明,使用开放固件允许Linux启动时真正初始化硬件(而不依赖BIOS)。最重要的是,许多开放BIOS可以设置满足机器的特殊需要。如果不走开放BIOS之路,至少也可以设置BIOS不寻找不存在的软盘驱动器,即直接启动第一个硬盘驱动器(首先不是CD驱动器)。
  7: 回避DHCP
  如果你工作在地址租约不是问题的家庭网络(或者小型企业网络)上,那么,机器就用静态IP地址。这将使机器不必出外访问DHCP服务器来获得IP地址。如果采取这种途径,就要确保配置文件/etc/resolve.conf也表达你的DNS服务器地址。   8: 热插拔可免就免
  热插拔是指允许把新设备插上电源并立即使用的系统。如果你知道你的服务器不需要这种系统,就删除它。这将减少启动时间。在许多系统上,热插拔消耗大量启动时间。排除热插拔将发生的变化取决于你所用的发行版。注意:就绝大部分而言,udev已经取代热插拔。但如果你还在运行老一点的发行版,这样做还是适合的。
  9: 要是真的大胆无畏,可尝试一下initng
  initng系统充当sysvinit系统的替换物,并承诺彻底减少类UNIX操作系统的启动时间。如果你愿意了解运行中的initng系统,可以试一试Pingwinek LiveCD。
  10: 利用Debian具有的代码
  要是正在使用Debian,就有一行可用来将你的启动脚本转换成并行运行的简单代码。如果检查一下/etc/init.d/rc脚本,就会看到:大约在24行有CONCURRENCY=none。把这一行改为CONCURRENCY=shell,你有可能目睹启动时间的减少。
  上述大部分应该是最重要的,当然最快的使Linux启动提速的方法就是不要重启,所以,极少重新启动一般可以减轻启动时间的担子。
Linux相关资讯
维库电子通,电子知识,一查百通!已收录词条7874个
一周热门词条排行
Linux相关技术资料
您最关心的搜索}

我要回帖

更多关于 linux 文件夹操作 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信