已知平面上上任意两点求斜率,请编写程序,输入两点求斜率的坐标,输出这两点求斜率连线的斜率

平面上有相异两点A(sinθ,cos^2θ)和B(0,1),求经过A.B两点直线的斜率及倾斜角的范_百度知道
平面上有相异两点A(sinθ,cos^2θ)和B(0,1),求经过A.B两点直线的斜率及倾斜角的范
面上有相异两点A(sinθ,求经过A.B两点直线的斜率及倾斜角的范围,cos^2θ)和B(0,1)
我有更好的答案
按默认排序
其他类似问题
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>曲线y=-x2+4x上有两点A(4,0)、B(2,4).求:(1)割线AB的斜率kAB及..
曲线y=-x2+4x上有两点A(4,0)、B(2,4).求:(1)割线AB的斜率kAB及AB所在直线的方程;(2)在曲线AB上是否存在点C,使过C点的切线与AB所在直线平行?若存在,求出C点的坐标;若不存在,请说明理由.
题型:解答题难度:中档来源:不详
(1)∵点A(4,0)、B(2,4).∴kAB=4-02-4=-2,∴y=-2(x-4).∴所求割线AB所在直线方程为2x+y-8=0.(2)y′=-2x+4,-2x+4=-2,得x=3,y=-32+3×4=3.∴C点坐标为(3,3),所求切线方程为2x+y-9=0.故在曲线AB上存在点C,使过C点的切线与AB所在直线平行.
马上分享给同学
据魔方格专家权威分析,试题“曲线y=-x2+4x上有两点A(4,0)、B(2,4).求:(1)割线AB的斜率kAB及..”主要考查你对&&导数的概念及其几何意义&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
导数的概念及其几何意义
平均变化率:
一般地,对于函数y =f(x),x1,x2是其定义域内不同的两点,那么函数的变化率可用式表示,我们把这个式子称为函数f(x)从x1到x2的平均变化率,习惯上用表示,即平均变化率&&上式中的值可正可负,但不为0.f(x)为常数函数时,&
瞬时速度:如果物体的运动规律是s=s(t),那么物体在时刻t的瞬时速度v就是物体在t到这段时间内,当时平均速度的极限,即若物体的运动方程为s=f(t),那么物体在任意时刻t的瞬时速度v(t)就是平均速度v(t,d)为当d趋于0时的极限.
函数y=f(x)在x=x0处的导数的定义:
一般地,函数y=f(x)在x=x0处的瞬时变化率是,我们称它为函数y=f(x)在x=x0处的导数,记作或,即。
如果函数y =f(x)在开区间(a,6)内的每一点都可导,则称在(a,b)内的值x为自变量,以x处的导数称为f(x为函数值的函数为fx)在(a,b)内的导函数,简称为f(x)在(a,b)内的导数,记作f′(x)或y′.即f′(x)=
切线及导数的几何意义:
(1)切线:PPn为曲线f(x)的割线,当点Pn(xn,f(xn))(n∈N)沿曲线f(x)趋近于点P(x0,f(x0))时,割线PPn趋近于确定的位置,这个确定的位置的直线PT称为点P处的切线。 (2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=。瞬时速度特别提醒:
①瞬时速度实质是平均速度当时的极限值.②瞬时速度的计算必须先求出平均速度,再对平均速度取极限,
&函数y=f(x)在x=x0处的导数特别提醒:
①当时,比值的极限存在,则f(x)在点x0处可导;若的极限不存在,则f(x)在点x0处不可导或无导数.②自变量的增量可以为正,也可以为负,还可以时正时负,但.而函数的增量可正可负,也可以为0.③在点x=x0处的导数的定义可变形为:&&&&
导函数的特点:
①导数的定义可变形为: ②可导的偶函数其导函数是奇函数,而可导的奇函数的导函数是偶函数,③可导的周期函数其导函数仍为周期函数,④并不是所有函数都有导函数.⑤导函数与原来的函数f(x)有相同的定义域(a,b),且导函数在x0处的函数值即为函数f(x)在点x0处的导数值.⑥区间一般指开区间,因为在其端点处不一定有增量(右端点无增量,左端点无减量).
导数的几何意义(即切线的斜率与方程)特别提醒:
①利用导数求曲线的切线方程.求出y=f(x)在x0处的导数f′(x);利用直线方程的点斜式写出切线方程为y-y0 =f′(x0)(x- x0).②若函数在x= x0处可导,则图象在(x0,f(x0))处一定有切线,但若函数在x= x0处不可导,则图象在(x0,f(x0))处也可能有切线,即若曲线y =f(x)在点(x0,f(x0))处的导数不存在,但有切线,则切线与x轴垂直.③注意区分曲线在P点处的切线和曲线过P点的切线,前者P点为切点;后者P点不一定为切点,P点可以是切点也可以不是,一般曲线的切线与曲线可以有两个以上的公共点,④显然f′(x0)&0,切线与x轴正向的夹角为锐角;f′(x0)&o,切线与x轴正向的夹角为钝角;f(x0) =0,切线与x轴平行;f′(x0)不存在,切线与y轴平行.
发现相似题
与“曲线y=-x2+4x上有两点A(4,0)、B(2,4).求:(1)割线AB的斜率kAB及..”考查相似的试题有:
852109848491820120795567274314815895当前位置:
>>>已知椭圆C:的离心率为,过右焦点F的直线l与C相交于A、B两点,当l..
已知椭圆C:的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
题型:解答题难度:偏难来源:高考真题
解:(I)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,由,得。 (Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(I)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(i)当l不垂直于x轴时,设l的方程为y=k(x-1), C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6,又A、B在C上,即2x12+3y12=6,2x22+3y22=6,故2x1x2+3y1y2+3=0, ①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,代入①解得,k2=2,此时,于是,即,因此,当时,,l的方程为;当时,,l的方程为。(ⅱ)当l垂直于x轴时,由知,C上不存在点P使成立;综上,C上存在点使成立,此时l的方程为。
马上分享给同学
据魔方格专家权威分析,试题“已知椭圆C:的离心率为,过右焦点F的直线l与C相交于A、B两点,当l..”主要考查你对&&直线与椭圆方程的应用,向量的加、减法运算及几何意义,点到直线的距离,椭圆的性质(顶点、范围、对称性、离心率)&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
直线与椭圆方程的应用向量的加、减法运算及几何意义点到直线的距离椭圆的性质(顶点、范围、对称性、离心率)
直线与椭圆的方程:
设直线l的方程为:Ax+By+C=0(A、B不同时为零),椭圆(a>b>0),将直线的方程代入椭圆的方程,消去y(或x)得到一元二次方程,进而应用根与系数的关系解题。椭圆的焦半径、焦点弦和通径:
(1)焦半径公式:①焦点在x轴上时:|PF1|=a+ex0,|PF2|=a-ex0;②焦点在y轴上时:|PF1|=a+ey0,|PF2|=a-ey0;(2)焦点弦:过椭圆焦点的弦称为椭圆的焦点弦.设过椭圆的弦为AB,其中A(x1,y1),B(x2,y2),则|AB|=2a+e(x1+x2).由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数.(3)通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为&
椭圆中焦点三角形的解法:
椭圆上的点与两个焦点F1,F2所构成的三角形,通常称之为焦点三角形,解焦点三角形问题经常使用三角形边角关系定理,解题中,通过变形,使之出现,这样便于运用椭圆的定义,得到a,c的关系,打开解题思路,整体代换求是这类问题中的常用技巧。关于椭圆的几个重要结论:
(1)弦长公式: (2)焦点三角形:上异于长轴端点的点, (3)以椭圆的焦半径为直径的圆必与以长轴为直径的圆内切.(4)椭圆的切线:处的切线方程为
(5)对于椭圆,我们有
&向量加法的定义:
已知非零向量a,b,在平面内任取一点A,作,再做向量,则向量叫做与的和,即。 作向量的加法有“三角形法则”和“平行四边形法则”,其中“平行四边形法则”只适用于不共线的向量。
向量加法的三角形法则:
已知非零向量a,b,在平面内任意取一点A,作a,,
这种求向量和的方法称为向量加法的三角形法则,如图
向量加法的平行四边形法则:
以同一点O起点的两个已知向量a,b为邻边作平行四边形OACB,则以O为起点的对角线OC就是a与b的和,这种作两个向量和的方法叫做向量加法的平行四边形法则,如图.
向量减法的定义:
向量与向量的相反向量的和,叫做向量与向量的差,记作:。 作向量减法有“三角形法则”:设,那么,由减向量和终点指向被减向量和终点。 注意:此处减向量与被减向量的起点相同。
向量减法的作图法:
&因此,a-b可以表示为从向量b的终点指向向量a的终点的向量,这就是向量减法的几何意义.
坐标运算:
已知,则。向量加减法的运算律:
(1)交换律:; (2)结合律: 求向量的和的三角形法则的理解:
使用三角形法则特别要注意“首尾相接”,具体做法是把用小写字母表示的向量,用两个大写字母表示(其中后面向量的起点与其前一个向量的终点重合,即用同一个字母表示),则由第一个向量的起点指向最后一个向量终点的有向线段就表示这些向量的和。对于n个向量,仍有 这可以称为向量加法的多边形法则。
作两个向量的和向量,可分四步:
①取点,注意取点的任意性;②作相等向量,分别作与两个已知向量相等的向量,使它们的起点重合;③作平行四边形,以两个向量为邻边作平行四边形;④作和向量,与两个向量有共同起点的对角线作为和向量,共同的起点作为和向量的起点,对角线的另一个端点作为和向量的终点.当两个向量不共线时,三角形法则和平行四边形法则是一致的;当两个向量共线时,三角形法则同样适用,而平行四边形法则就不适用了.
向量的加法需要说明的几点:
①当两个非零向量a与b不共线时,a+b的方向与a,b的方向都不相同,且②当两个非零向量a与b共线时,a.向量a与b同向(如下图),即向量a+b与a(或b)方向相同,且&b.向量a与b反向(如上图)且|a|&|b|时,即a+b与b方向相同(与a方向相反),且
向量减法的理解:
①定义向量减法是借助了相反向量和向量加法,其实,向量减法的实质是向量加法的逆运算.两个向量的差仍是向量;②作差向量时,作法一较为复杂,作法二较为简捷,应根据问题的需要灵活运用;③以为邻边作平行四边形ABCD,则两条对角线表示的向量为这一结论在以后的应用是非常广泛的,应该加强理解并记住;④对于任意一点O,简记为“中减起”,在解题中经常用到,必须记住.点到直线的距离公式:
1、若点P(x0,y0)在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C=0。 2、若点P(x0,y0)不在直线Ax+By+C=0(A,B不同时为0)上,则Ax0+By0+C≠0,此时点P(x0,y0)直线Ax+By+C=0(A,B不同时为0)的距离d=。 点到直线的距离公式的理解:
①点到直线的距离是直线上的点与直线外一点的连线的最短距离(这是从运动观点来看的).②若给出的直线方程不是一般式,则应先把方程化为一般式,再利用公式求距离.③点到直线的距离公式适用于任何情况,其中点P在直线l上时,它到直线的距离为0.④点到几种特殊直线的距离:&&
&&椭圆的离心率:
椭圆的焦距与长轴长之比叫做椭圆的离心率。椭圆的性质:
1、顶点:A(a,0),B(-a,0),C(0,b)和D(0,-b)。 2、轴:对称轴:x轴,y轴;长轴长|AB|=2a,短轴长|CD|=2b,a为长半轴长,b为短半轴长。 3、焦点:F1(-c,0),F2(c,0)。 4、焦距:。 5、离心率:;&离心率对椭圆形状的影响:e越接近1,c就越接近a,从而b就越小,椭圆就越扁;e越接近0,c就越接近0,从而b就越大,椭圆就越圆; 6、椭圆的范围和对称性:(a>b>0)中-a≤x≤a,-b≤y≤b,对称中心是原点,对称轴是坐标轴。。利用椭圆的几何性质解题:
利用椭圆的几何性质可以求离心率及椭圆的标准方程.要熟练掌握将椭圆中的某些线段长用a,b,c表示出来,例如焦点与各顶点所连线段的长,过焦点与长轴垂直的弦长等,这将有利于提高解题能力。
椭圆中求最值的方法:
求最值有两种方法:(1)利用函数最值的探求方法利用函数最值的探求方法,将其转化为函数的最值问题来处理.此时应充分注意椭圆中x,y的范围,常常是化为闭区间上的二次函数的最值来求解。(2)数形结合的方法求最值解决解析几何问题要注意数学式子的几何意义,寻找图形中的几何元素、几何量之间的关系.
椭圆中离心率的求法:
在求离心率时关键是从题目条件中找到关于a,b,c的两个方程或从题目中得到的图形中找到a,b,c的关系式,从而求离心率或离心率的取值范围.
发现相似题
与“已知椭圆C:的离心率为,过右焦点F的直线l与C相交于A、B两点,当l..”考查相似的试题有:
619895244046285924283435266774277064已知函数 f(x)=-x3+ax2+b(a,b属于R).)若曲线f(x)上任意不同两点的连线的斜率小于1,求a的取值范围.转化为导数f'(x)_百度作业帮
已知函数 f(x)=-x3+ax2+b(a,b属于R).)若曲线f(x)上任意不同两点的连线的斜率小于1,求a的取值范围.转化为导数f'(x)对不起,我是问:转化为导数f'(x)
∵f(x)上任意不同两点的连线的斜率小于1∴f′(x)<1∵ f(x)=-x^3+ax^2+b(a,b属于R)∴f′(x)=-3x^2+2ax∴-3x^2+2ax<1∴-3x^2+2ax-1<0y=3x^2-2ax+1=3[x-(a/3)]^2-1-(a^2/3)ymax=-1-(a^2/3)<0只要<0就使得-3x^2+2ax-1<0恒成立∴a^2>3∴a<-√3或a>√3函数的倒数等于该函数曲线的斜率,斜率小于0说明该函数曲线在该定义域的区间递减~
求其倒数,f’(x)=3x2+2ax,所以3x2+2ax<1;导数的意义不就是这点上的斜率嘛,任意两点不就是可以取极限了嘛,没一点的斜率都小于1;所以倒数小于1;所以就结吧;加油
:∵f(x)上任意不同两点的连线的斜率小于1∴f′(x)<1∵ f(x)=-x^3+ax^2+b(a,b属于R)∴f′(x)=-3x^2+2ax∴-3x^2+2ax<1∴-3x^2+2ax-1<0y=3x^2-2ax+1=3[x-(a/3)]^2-1-(a^2/3)ymax=-1-(a^2/3)<0只要<0就使得-3x...f(x)=loga(a^x-1)(a>0,且a≠1)证:(1)函数图象在y轴一侧;(2)函数图像上任意两点连线斜率>0_百度作业帮
f(x)=loga(a^x-1)(a>0,且a≠1)证:(1)函数图象在y轴一侧;(2)函数图像上任意两点连线斜率>0
(1)由于f(x)=loga(a^x-1)(a>0,且a≠1)则a^x-1>0,a>0,可得x>0,则函数图象在y轴右侧(2)设(x1,y1),(x2,y2)分别为函数图像上任意两点;则y1=loga(a^x1-1);y2=loga(a^x3-1)斜率k=(y2-y1)(x2-x1)=[loga(a^x2-1)-loga(a^x1-1)]/(x2-x1)=loga[(a^x2-1)/(a^x1-1)]/(x2-x1)>0}

我要回帖

更多关于 已知直线l的斜率为1 6 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信