oncogene open access journalfee是多少

君,已阅读到文档的结尾了呢~~
Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentation of cholangiocarcinoma
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentation of cholangiocarcinoma
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='/DocinViewer--144.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口OALib Journal期刊
费用:99美元
查看量下载量
Targeting Oncogene-Induced Autophagy: A New Approach in Cancer Therapy?
Autophagy is a tightly controlled self-degradation process utilised by cells to sustain cellular homeostasis and to support cell survival in response to metabolic stress and starvation. Thus, autophagy plays a critical role in promoting cell integrity and maintaining proper function of cellular processes. Defects in autophagy, however, can have drastic implications in human health and diseases, including cancer. Described as a double-edged sword in the context of cancer, autophagy can act as both suppressor and facilitator of tumorigenesis. As such, defining the precise role of autophagy in a multistep event like cancer progression can be complex. Recent findings have implicated a role for components of the autophagy pathway in oncogene-mediated cell transformation, tumour growth, and survival. Notably, aggressive cancers driven by Ras oncoproteins rely on autophagy to sustain a reprogrammed mitochondrial metabolic signature and evade cell death. In this review, we summarize our current understanding of the role of oncogene-induced autophagy in cancer progression and discuss how modulators of autophagic responses can bring about therapeutic benefit and eradication of a subset of cancers that are addicted to this ancient recycling machinery. 1. Introduction Almost two decades ago, the Ohsumi laboratory first discovered and characterized the autophagy-related (ATG) genes in yeast [1, 2]. Since then, researchers around the world work relentlessly to unravel the biology of autophagy and its roles in a variety of human diseases. Autophagy can be broadly categorized into macroautophagy, microautophagy, and chaperone-mediated autophagy. Macroautophagy (hereafter autophagy) is a tightly regulated catabolic mechanism in the cell. It involves the sequestration of dysfunctional cytoplasmic constituents, ranging from misfolded proteins, proteoglycans and damaged organelles into double membrane vesicles, known as the autophagosomes. These autophagic vesicles eventually fuse with lysosomes, within which the dysfunctional cytoplasmic cargoes are degraded. This self-cannibalisation process in the cell appears to play a crucial role in supporting the bioenergetics and biosynthetic programs in response to nutrient deprivation and metabolic duress [3]. Under optimal growth conditions of a normal cell, the autophagic activity is kept in a minimal or basal state. Such basal autophagy is important for maintaining intracellular protein homeostasis and preservation of cellular integrity, through effective clearance of protein aggregates and damaged organelles. Under
References
[]&&K. Takeshige, M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi, “Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction,” Journal of Cell Biology, vol. 119, no. 2, pp. 301–312, 1992.
[]&&D. J. Klionsky, “Autophagy: from phenomenology to molecular understanding in less than a decade,” Nature Reviews Molecular Cell Biology, vol. 8, no. 11, pp. 931–937, 2007.
[]&&B. Ravikumar, M. Futter, L. Jahreiss et al., “Mammalian macroautophagy at a glance,” Journal of Cell Science, vol. 122, no. 11, pp. , 2009.
[]&&J. K. Lennerz, J. B. Hurov, L. S. White et al., “Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis,” Molecular and Cellular Biology, vol. 30, no. 21, pp. , 2010.
[]&&B. Dehay, J. Bové, N. Rodríguez-Muela et al., “Pathogenic lysosomal depletion in Parkinson's disease,” Journal of Neuroscience, vol. 30, no. 37, pp. 1, 2010.
[]&&S. J. Martin, “Oncogene-induced autophagy and the Goldilocks principle,” Autophagy, vol. 7, no. 8, pp. 922–923, 2011.
[]&&A. C. Kimmelman, “The dynamic nature of autophagy in cancer,” Genes and Development, vol. 25, no. 19, pp. , 2011.
[]&&E. White and R. S. DiPaola, “The double-edged sword of autophagy modulation in cancer,” Clinical Cancer Research, vol. 15, no. 17, pp. , 2009.
[]&&Y. Pylayeva-Gupta, E. Grabocka, and D. Bar-Sagi, “RAS oncogenes: weaving a tumorigenic web,” Nature Reviews Cancer, vol. 11, no. 11, pp. 761–774, 2011.
[]&&J. Downward, “Targeting RAS signalling pathways in cancer therapy,” Nature Reviews Cancer, vol. 3, no. 1, pp. 11–22, 2003.
[]&&J. Y. Guo, H.-Y. Chen, R. Mathew et al., “Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis,” Genes and Development, vol. 25, no. 5, pp. 460–470, 2011.
[]&&M.-J. Kim, S.-J. Woo, C.-H. Yoon et al., “Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation,” Journal of Biological Chemistry, vol. 286, no. 15, pp. 1, 2011.
[]&&R. Lock, S. Roy, C. M. Kenific et al., “Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation,” Molecular Biology of the Cell, vol. 22, no. 2, pp. 165–178, 2011.
[]&&S. Yang, X. Wang, G. Contino et al., “Pancreatic cancers require autophagy for tumor growth,” Genes and Development, vol. 25, no. 7, pp. 717–729, 2011.
[]&&M. Elgendy, C. Sheridan, G. Brumatti, and S. J. Martin, “Oncogenic Ras-induced expression of noxa and beclin-1 promotes autophagic cell death and limits clonogenic survival,” Molecular Cell, vol. 42, no. 1, pp. 23–35, 2011.
[]&&G. Mari?o, I. Martins, and G. Kroemer, “Autophagy in Ras-induced malignant transformation: fatal or vital?” Molecular Cell, vol. 42, no. 1, pp. 1–3, 2011.
[]&&Y. Wang, Y. W. X, E. Lapi, A. Sullivan, W. Jia, et al., “Autophagic activity dictates the cellular response to oncogenic RAS,” Proceedings of the National Academy of Sciences, vol. 109, pp. 1, 2012.
[]&&R. G. Jones and C. B. Thompson, “Tumor suppressors and cell metabolism: a recipe for cancer growth,” Genes and Development, vol. 23, no. 5, pp. 537–548, 2009.
[]&&C. H. Eng and R. T. Abraham, “The autophagy conundrum in cancer: influence of tumorigenic metabolic reprogramming,” Oncogene, vol. 30, no. 47, pp. , 2011.
[]&&E. White, “Deconvoluting the context-dependent role for autophagy in cancer,” Nature Reviews Cancer, vol. 12, pp. 401–410.
[]&&E. Y. Liu and K. M. Ryan, “Autophagy and cancer—issues we need to digest,” Journal of Cell Science, vol. 125, pp. , 2012.
[]&&J. D. Mancias and A. C. Kimmelman, “Targeting autophagy addiction in cancer,” Oncotarget, vol. 2, pp. , 2011.
[]&&M. Tsuneoka, T. Umata, H. Kimura et al., “c-myc induces autophagy in rat 3Y1 fibroblast cells,” Cell Structure and Function, vol. 28, no. 3, pp. 195–204, 2003.
[]&&L. S. Hart, L. S. C. J, T. Datta, S. Dey, F. Tameire, et al., “ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth,” Journal of Clinical Investigation, vol. 122, pp. , 2012.
[]&&R. C. Sears, “The life cycle of c-Myc: from synthesis to degradation,” Cell Cycle, vol. 3, no. 9, pp. , 2004.
[]&&C. V. Dang, “MYC on the path to cancer,” Cell, vol. 149, no. 1, pp. 22–35, 2012.
[]&&N. Chen and V. Karantza, “Autophagy as a therapeutic target in cancer,” Cancer Biology and Therapy, vol. 11, no. 2, pp. 157–168, 2011.
[]&&S. Chen, S. K. Rehman, W. Zhang, A. Wen, L. Yao, and J. Zhang, “Autophagy is a therapeutic target in anticancer drug resistance,” Biochimica et Biophysica Acta, vol. 1806, no. 2, pp. 220–229, 2010.
[]&&T. R. O'Donovan, G. C. O'Sullivan, and S. L. McKenna, “Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics,” Autophagy, vol. 7, no. 5, pp. 509–524, 2011.
[]&&J. Li, N. Hou, A. Faried, S. Tsutsumi, and H. Kuwano, “Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model,” European Journal of Cancer, vol. 46, no. 10, pp. , 2010.
[]&&S. Palumbo and S. Comincini, “Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma,” Journal of Cellular Physiology, vol. 228, pp. 1–8, 2013.
[]&&H. Chaachouay, P. Ohneseit, M. Toulany, R. Kehlbach, G. Multhoff, and H. P. Rodemann, “Autophagy contributes to resistance of tumor cells to ionizing radiation,” Radiotherapy and Oncology, vol. 99, no. 3, pp. 287–292, 2011.
[]&&S. Turcotte, D. A. Chan, P. D. Sutphin, M. P. Hay, W. A. Denny, and A. J. Giaccia, “A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy,” Cancer Cell, vol. 14, no. 1, pp. 90–102, 2008.
[]&&C. M. Chresta, B. R. Davies, I. Hickson et al., “AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity,” Cancer Research, vol. 70, no. 1, pp. 288–298, 2010.
[]&&F.-T. Liu, S. G. Agrawal, J. G. Gribben et al., “Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL,” Blood, vol. 111, no. 5, pp. , 2008.
[]&&C.-M. Hsu, Y. Tsai, L. Wan, and F.-J. Tsai, “Bufalin induces G2/M phase arrest and triggers autophagy via the TNF, JNK, BECN-1 and ATG8 pathway in human hepatoma cells,” International Journal of Oncology, vol. 43, no. 1, pp. 338–348, 2013.
[]&&C.-M. Xie, W. Y. Chan, S. Yu, J. Zhao, and C. H. K. Cheng, “Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. , 2011.
[]&&S. Y. Shin, K. S. Lee, Y.-K. Choi, H. J. Lim, H. G. Lee, et al., “The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting Akt/mTOR pathway in human U-87MG glioma cells,” Carcinogenesis, 2013.
[]&&X.-L. Guo, D. Li, F. Hu et al., “Targeting autophagy potentiates chemotherapy-induced apoptosis and proliferation inhibition in hepatocarcinoma cells,” Cancer Letters, vol. 320, no. 2, pp. 171–179, 2012.
[]&&W.-L. Yang, W. P. W, D. Liou, P. Marambaud, and P. Wang, “AMPK inhibitor compound C suppresses cell proliferation by induction of apoptosis and autophagy in human colorectal cancer cells,” Journal of Surgical Oncology, vol. 106, pp. 680–688, 2012.
[]&&R. Crazzolara, K. F. Bradstock, and L. J. Bendall, “RAD001 (everolimus) induces autophagy in acute lymphoblastic leukemia,” Autophagy, vol. 5, no. 5, pp. 727–728, 2009.
[]&&C. Cao, T. Subhawong, J. M. Albert et al., “Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells,” Cancer Research, vol. 66, no. 20, pp. 1, 2006.
[]&&N. Wang, W. Pan, M. Zhu et al., “Fangchinoline induces autophagic cell death via p53/sestrin2/AMPK signalling in human hepatocellular carcinoma cells,” British Journal of Pharmacology, vol. 164, no. 2, pp. 731–742, 2011.
[]&&G. Can, H. A. Ekiz, and Y. Baran, “Imatinib induces autophagy through BECLIN-1 and ATG5 genes in chronic myeloid leukemia cells,” Hematology, vol. 16, no. 2, pp. 95–99, 2011.
[]&&A. Gupta, S. Roy, A. J. F. Lazar et al., “Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST),” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 32, pp. 1, 2010.
[]&&H. C. Yu, C. S. Lin, W. T. Tai, C. Y. Liu, C. W. Shiau, and K. F. Chen, “Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation,” Journal of Biological Chemistry. In press.
[]&&N. Heidari, M. A. Hicks, and H. Harada, “GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy,” Cell Death and Disease, vol. 1, no. 9, article e76, 2010.
[]&&M. D. Bareford, M. A. Park, A. Yacoub et al., “Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells,” Cancer Research, vol. 71, no. 14, pp. , 2011.
[]&&Y. Tong, Y.-Y. Liu, L.-S. You, and W.-B. Qian, “Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro,” Acta Pharmacologica Sinica, vol. 33, no. 4, pp. 542–550, 2012.
[]&&M. Degtyarev, A. De Mazière, C. Orr et al., “Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents,” Journal of Cell Biology, vol. 183, no. 1, pp. 101–116, 2008.
[]&&J. Zhou, S. H. Tan, V. Nicolas, C. Bauvy, N.-D. Yang, et al., “Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion,” Cell Research, vol. 23, pp. 508–523, 2013.
[]&&J. Zhang, H. Zhang, T. Qi et al., “Autophagic cell death induced by resveratrol depends on the Ca2+/AMPK/mTOR pathway in A549 cells,” Biochemical Pharmacology, 2013.
[]&&L.-U. Ling, K.-B. Tan, H. Lin, and G. N. C. Chiu, “The role of reactive oxygen species and autophagy in safingol-induced cell death,” Cell Death and Disease, vol. 2, no. 3, article e129, 2011.
[]&&J. Coward, G. Ambrosini, E. Musi et al., “Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway,” Autophagy, vol. 5, no. 2, pp. 184–193, 2009.
[]&&T. Li, L. Su, N. Zhong, X. Hao, D. Zhong, et al., “Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells,” Autophagy, vol. 9, no. 7, 2013.
[]&&S.-H. Park, J. H. Kim, G. Y. Chi, G.-Y. Kim, Y.-C. Chang, et al., “Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species,” Toxicology Letters, vol. 212, pp. 252–261, 2012.
[]&&Q. Jiang, F. Li, K. Shi, Y. Yang, and C. Xu, “Sodium selenite-induced activation of DAPK promotes autophagy in human leukemia HL60 cells,” BMB Reports, vol. 45, pp. 194–199, 2012.
[]&&W. T. Tai, C. W. Shiau, H.-L. Chen, C. Y. Liu, C. S. Lin, et al., “Mcl-1-dependent activation of Beclin 1 mediates autophagic cell death induced by sorafenib and SC-59 in hepatocellular carcinoma cells,” Cell Death and Disease, vol. 4, Article ID e485, 2013.
[]&&V. Y. Yazbeck, D. Buglio, G. V. Georgakis et al., “Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma,” Experimental Hematology, vol. 36, no. 4, pp. 443–450, 2008.
[]&&C. C. Thoreen, S. A. Kang, J. W. Chang et al., “An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1,” Journal of Biological Chemistry, vol. 284, no. 12, pp. , 2009.
[]&&S.-E. Chow, Y. W. Chen, C.-A. Liang, Y.-K. Huang, and J.-S. Wang, “Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells,” Journal of Cellular Biochemistry, vol. 113, pp. , 2012.
[]&&J. Li, N. Hou, A. Faried, S. Tsutsumi, T. Takeuchi, and H. Kuwano, “Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 761–771, 2009.
[]&&D. Liu, Y. Yang, Q. Liu, and J. Wang, “Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells,” Medical Oncology, vol. 28, no. 1, pp. 105–111, 2011.
[]&&S. E. Tett, R. O. Day, and D. J. Cutler, “Concentration-effect relationship of hydroxychloroquine in rheumatoid arthritis—a cross sectional study,” Journal of Rheumatology, vol. 20, no. 11, pp. , 1993.
[]&&G. J. Cerniglia, J. Karar, S. Tyagi, M. Christofidou-Solomidou, R. Rengan, et al., “Inhibition of autophagy as a strategy to augment radiosensitization by the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235,” Molecular Pharmacology, vol. 82, pp. , 2012.
[]&&Y. Geng, L. Kohli, B. J. Klocke, and K. A. Roth, “Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent,” Neuro-Oncology, vol. 12, no. 5, pp. 473–481, 2010.
[]&&K. Sasaki, N. H. Tsuno, E. Sunami et al., “Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells,” BMC Cancer, vol. 10, article 370, 2010.
[]&&J. S. Carew, C. M. Espitia, J. A. Esquivel II et al., “Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis,” Journal of Biological Chemistry, vol. 286, no. 8, pp. , 2011.
[]&&J. Liu, H. Xia, M. Kim et al., “Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13,” Cell, vol. 147, no. 1, pp. 223–234, 2011.
[]&&L. Verschooten, K. Barrette, S. Van Kelst, N. Rubio Romero, C. Proby, et al., “Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells,” PLoS ONE, vol. 7, Article ID e4.
[]&&T. Shimgu, K. Fujiwara, O. Bogler et al., “Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity In human malignant glioma cells,” International Journal of Cancer, vol. 124, no. 5, pp. , 2009.
[]&&K. Sun, X. L. Guo, Q. D. Zhao, Y. Y. Jing, et al., “Paradoxical role of autophagy in the dysplastic and tumor-forming stages of hepatocarcinoma development in rats,” Cell Death and Disease, vol. 4, Article ID e501, 2013.
[]&&N. Mizushima, “Chapter 2 methods for monitoring autophagy using GFP-LC3 transgenic mice,” Methods in Enzymology, vol. 451, pp. 13–23, 2009.
[]&&S. Barth, D. Glick, and K. F. Macleod, “Autophagy: assays and artifacts,” Journal of Pathology, vol. 221, no. 2, pp. 117–124, 2010.
[]&&J. M. M. Levy and A. Thorburn, “Targeting autophagy during cancer therapy to improve clinical outcomes,” Pharmacology and Therapeutics, vol. 131, no. 1, pp. 130–141, 2011.
[]&&F. Meric-Bernstam and A. M. Gonzalez-Angulo, “Targeting the mTOR signaling network for cancer therapy,” Journal of Clinical Oncology, vol. 27, no. 13, pp. , 2009.
[]&&K. E. O'Reilly, F. Rojo, Q.-B. She et al., “mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt,” Cancer Research, vol. 66, no. 3, pp. , 2006.
[]&&K. Yu, C. Shi, L. Toral-Barza et al., “Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2,” Cancer Research, vol. 70, no. 2, pp. 621–631, 2010.
[]&&M. E. Feldman, B. Apsel, A. Uotila et al., “Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2,” PLoS Biology, vol. 7, no. 2, Article ID e38, 2009.
[]&&M. R. Janes, J. J. Limon, L. So et al., “Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor,” Nature Medicine, vol. 16, no. 2, pp. 205–213, 2010.
[]&&Q.-W. Fan, C. Cheng, C. Hackett et al., “Akt and autophagy cooperate to promote survival of drug-resistant glioma,” Science Signaling, vol. 3, no. 147, article ra81, 2010.
[]&&M. P. Ghadimi, G. Lopez, K. E. Torres, R. Belousov, E. D. Young, et al., “Targeting the PI3K/mTOR axis, alone and in combination with autophagy blockade, for the treatment of malignant peripheral nerve sheath tumors,” Molecular Cancer Therapeutics, vol. 11, pp. , 2012.
[]&&M. Selvakumaran, R. K. Amaravadi, I. A. Vasilevskaya, and P. J. O'Dwyer, “Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy,” Clinical Cancer Research, vol. 19, no. 11, pp. , 2013.
[]&&L. Vucicevic, M. Misirkic, K. Janjetovic et al., “Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway,” Autophagy, vol. 7, no. 1, pp. 40–50, 2011.
[]&&F. Lamoureux and A. Zoubeidi, “Dual inhibition of autophagy and the AKT pathway in prostate cancer,” Autophagy, vol. 9, no. 7, 2013.
[]&&M. Donadelli, I. Dando, T. Zaniboni et al., “Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism,” Cell Death and Disease, vol. 2, no. 4, article 152, 2011.
[]&&Y. Tang, H. A. Hamed, N. Cruickshanks, P. B. Fisher, S. Grant, and P. Dent, “Obatoclax and lapatinib interact to induce toxic autophagy through NOXA,” Molecular Pharmacology, vol. 81, no. 4, pp. 527–540, 2012.
[]&&L. Deng, Y. Lei, R. Liu, J. Li, K. Yuan, et al., “Pyrvinium targets autophagy addiction to promote cancer cell death,” Cell Death and Disease, vol. 4, Article ID e614, 2013.
[]&&J. Huang, K. Liu, Y. Yu et al., “Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma,” Autophagy, vol. 8, no. 2, 2012.
[]&&C. Peracchio, O. Alabiso, G. Valente, and C. Isidoro, “Involvement of autophagy in ovarian cancer: a working hypothesis,” Journal of Ovarian Research, vol. 5, article 22, 2012.
[]&&H.-Y. Chen and E. White, “Role of autophagy in cancer prevention,” Cancer Prevention Research, vol. 4, no. 7, pp. 973–983, 2011.
[]&&R. K. Amaravadi, D. Yu, J. J. Lum et al., “Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma,” Journal of Clinical Investigation, vol. 117, no. 2, pp. 326–336, 2007.
[]&&T. Munster, J. P. Gibbs, D. Shen et al., “Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 46, no. 6, pp. , 2002.
[]&&R. K. Amaravadi, J. Lippincott-Schwartz, X.-M. Yin et al., “Principles and current strategies for targeting autophagy for cancer treatment,” Clinical Cancer Research, vol. 17, no. 4, pp. 654–666, 2011.
[]&&K. T. Flaherty, J. R. Infante, A. Daud, R. Gonzalez, R. F. Kefford, et al., “Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations,” The New England Journal of Medicine, vol. 367, pp. , 2012.
[]&&A. Broniscer, S. D. Baker, C. Wetmore et al., “Phase I trial, pharmacokinetics, and pharmacodynamics of vandetanib and dasatinib in children with newly diagnosed diffuse intrinsic pontine glioma,” Clinical Cancer Research, vol. 19, no. 11, pp. , 2013.
[]&&V. R. Recinos, B. M. Tyler, K. Bekelis et al., “Combination of intracranial temozolomide with intracranial carmustine improves survival when compared with either treatment alone in a rodent glioma model,” Neurosurgery, vol. 66, no. 3, pp. 530–537, 2010.
[]&&M. L. Bristol, S. M. Emery, P. Maycotte, A. Thorburn, S. Chakradeo, et al., “Autophagy inhibition for chemosensitization and radiosensitization in cancer: do the preclinical data support this therapeutic strategy?” Journal of Pharmacology and Experimental Therapeutics, vol. 344, pp. 544–552, 2013.
Please enable JavaScript to view the
&&&OALib Suggest
Live SupportAsk us anything}

我要回帖

更多关于 open choice fee 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信