锂电池从35v充电器改4.2v教程到4.2v 一个用5v1A充, 一个用5v100MA充, 两个容量一样多吗?

当前位置: >
分析锂电池充放电保护电路的特点及工作原理
&&& 锂在元素周期表上位于第3位,因外层电子数为1个,容易失去从而形成稳定结构,故锂是一种非常活泼的金属。由锂元素制成的锂离子电池,具有放电电流大、内阻低、寿命长、无记忆效应等优点,现已被广泛使用。但锂离子电池在使用中严禁过充电、过放电和短路,否则将会引起电池寿命缩短或起火、爆炸等事故,因此可充型锂电池都会连接一块充放电保护电路板(常简称保护板)来保护电芯的安全,如图1所示。
&&& 锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。
&&& [提示]PTC是英文Positivetemperature coefficient的缩写,意即正温度系数电阻(温度越高,阻值越大)。该元件可起过流保护作用,即防止电池高温放电和不安全的大电流充放电。PTC器件采用高分子材料聚合物,通过严格的工艺制成,由聚合物树醋基体及分布在里面的导电粒子组成。在正常情况下,导电粒子在树醋中构成导电通路,器件表现为低阻抗;当电路中有过流现象发生时,流经PTC的大电流产生的热量使聚合物树醋基体体积膨胀,因而切断导电粒子间的连接,从而对电路起到过流保护作用。当故障解啥后,该元件可自动恢复到初始状态,保证电路正常工作。
&&& 一、锂电池的充放电要求
&&&&& 1.锂电池的充电
&&& 单节锂电池的最高充电终止电压为4.2V,不能过充,否则会因正极的锂离子丢失太多而使电池报废。对锂电池充电时,应采用专用的恒流、恒压充电器,先恒流充电至锂电池两端电压为4.2V后,转入恒压充电模式;当恒压充电电流降至100mA时,应停止充电。
&&& 充电电流(mA)可为0.1~1.5倍电池容量,例如:1350mAh的锂电池,其充电电流可控制在135mA~2025mA之间。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。
&&& 2. 锂电池的放电
&&& 由于锂电池的内部结构原因,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命会缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。单节锂电池的放电终止电压通常为3.0V,最低不能低于2.5V。电池放电时间长短与电池容量、放电电流大小有关。电池放电时间(小时)=电池容量/放电电流,且锂电池放电电流(mA)不应超过电池容量的3倍,例如:1000mAh的锂电池,则放电电流应严格控制在3A以内,否则会使电池损坏。
&&& 二、保护电路的组成
&&& 保护电路通常由控制IC、MOs开关管、熔断保险丝、电阻、电容等元件组成,如图2所示。正常的情况下,控制IC输出信号控制MOs开关管导通,使电芯与外电路导通,当电芯电压或回路电流超过规定值时,它立即控制MOS管关断,以保护电芯的安全。
&&& 控制IC内置高精度电压检测电路和多级电流检测电路。其中,电压检测电路一是对充电电压进行检测,一旦达到其设定阈值(通常为3.9V~4.4V),立即进入过充电保护状态;二是对放电电压进行检测,一旦达到其设定阈值(通常为2.0V~3.0V ),立即进入过放电保护状态。
&&& 在该电路中,MOS开关管多采用薄型TSSOP -8或SOT23 -6封装形式,其外形如图3所示。这些MOS开关管有的内含一只N沟道场效应管,如FDMC7680,其①~③脚为S极,④脚为G极,⑤~⑧脚为D极,其内部结构如图4所示;有的内含两只N沟道场效应管,如FDW9926A、8205A等,其引脚功能与封装形式有关,如图5所示。
【提示】若控制IC与MOs开关管上有小圆形凹点,则该凹点所对管脚为①脚;若表面没有凹点,则元件型号标注左侧的第一个管脚为①脚,其余引脚按逆时针方向排列。另外,在换用MOS开关管时,需根据实际线路走向判断其内部电路,从而进行正确的代换。
&&& 另外,部分锂电池保护电路中还安装有NTC和ID信号形成元件。NTC是英文Negativetemperature coefficient的缩写,意即负温度系数电阻。该元件在此电路中主要起过热保护作用,即当电池自身或其周边环境温度升高时,NTC元件阻值降低,使用电设备或充电设备及时作出反应,若温度超过一定值时,系统进入保护状态,停止充放电。ID是Identification的缩写,即身份识别的意思,其信息识别的元件分为两种:一是存储器,常为兽线接口存储器,存储电池种类、生产日期等信息;二是识别电阻,这两者均可起到产品的可追溯和应用的限制。
&&& 三、保护电路工作原理分析
&&& 单节锂电池的正常输出电压约为3.7V,可直接作为手机、MP3/MP4及部分小屏幕的平板电脑的电源。对于需要较高电压的电器而言,如移动DVD/EVD或大屏幕平板电脑,这时可用多节锂电池串联得到所需电压,如一款需11.1V供电的平板电脑,则配用电池组件为三块串联的锂电池。单节锂电池与多节串联锂电池的保护电路有所不同,下面分别举例分析。
&&& 1.单节锂电池保护电路
&&& 单节锂电池充放电保护电路的具体组成方案较多,但工作原理相差不大,下面以在手机中用得较多的一种电路为例进行分析,供参考。
&&& 该电路的控制芯片为DW01(或312F) , MOS开关管为8205A,如图6所示,B+、B-分别是接电芯的正、负极;P+、P -分别是保护板输出的正、负极; T为温度电阻(NTC)端口,一般需要与用电器的CPU配合才能进行保护控制。
&&& DWO1或312F是一款锂电池保护芯片,内置有高精确度的电压检测与时间延迟电路,主要参数如下:过充检测电压为3V,过充释放电压为4.05V;过放检测电压为2.5V,过放释放电压为3.0V ;过流检测电压为5V,短路电流检测电压为1.0V;DW01允许电池输出的最大电流是3.3A。该芯片的引脚功能见表1。
&&& (1)正常工作
&&& 该保护板的电路如图7所示,当电芯电压在2.5V~4.3V之间时,DW01的①、③脚均输出高电平(等于供电电压),②脚电压为0V。此时8205A内的两只N沟道场效应管Q1、Q2均处于导通状态,由于8205A的导通电阻很小,相当于D、S极间直通,此时电芯的负极与保护电路的P-端相当于直接连通,保护电路有电压输出,其电流回路如下:B+&P+&负载。P-&8205A的②、③脚&8205A的①脚&8205A的⑧脚&8205A的⑥、⑦脚&B-。
&&& 【提示】在此电路中,8205A内部场效应管Q1、Q2可等效为两只开关,当Q1或Q2的G极电压大于1V时,开关管导通,D、S间内阻很小(数十毫欧姆),相当于开关闭合;当G极电压小于0.7V时,开关管截止,D、S极间的导通内阻很大(几兆欧姆),相当于开关断开。[1]&&&
?上一文章:
?下一文章:
& &评论摘要(共 0 条,得分 0 分,平均 0 分)
Copyright &
. All Rights Reserved .
页面执行时间:7,171.87500 毫秒提升移动设备充电效率,线性锂电池充电IC作用明显
  由于下一代电池的开发速度至今仍跟不上摩尔定律的步伐,所以须要可以提供更好性能、高度整合且功能丰富的积体电路(IC)。为了简化新系统的开发,学习如何使用此类IC进行设计非常重要。
  电池通常可以将化学能转化为电能或电压,因此如果某种电池的能量可以恢復,则该电池是二次电池或可充电电池。在行动装置的应用中常用的电池是镍氢(NiMH)电池和锂离子(Li-Ion)电池。如表1所示,与镍氢电池相比,锂离子电池具有更好的特性。例如,每节电池的标準电压更高、自放电率更低、品质能量密度与体积能量密度更高,这使它们对于有需求的应用上更具吸引力。
  减少设备成本与重量 单节电池优势更显着
  如果设计人员在使用锂离子电池时保持谨慎,其实是相当安全的。表2列出了锂离子电池供电系统的一些典型应用。单节和双节电池应用占据了大约70%的锂离子电池市场。在小工具、数位摄影机和类似设备的设计中,最新的趋势要求减少设备体积、成本和重量,这促使一些双节电池应用转变为单节电池应用。需要叁节镍氢电池的设备,其电池可用单节锂离子电池替代。而减少系统中电池数量的其中一个优点是,可以省去为了平衡多节电池所需的额外工作。
  透过广泛应用的通用序列匯流排(USB),锂离子电池可以使用大多数电脑上的USB埠进行充电。USB协定的标準电压为5伏特(V),这使USB协定对于单节锂离子电池应用极具吸引力。USB规範规定,主机或集线器的电压降範围为4.75~5.25V,且主机和集线器的连接器的电压不允许低于4.45V。锂离子电池的典型充电演算法是恆流与恆压(CC/CV)演算法。在每节电池的充电电压达到4.2V时,充电器会维持恆压,直到满足终止条件。应当仔细地设计电池的电压(有一定的误差範围),以避免充电提前终止和产生危险。此一USB电压範围非常适合于简单的步降充电器设计,这种设计的锂离子电池稳压典型值为4.2V。
  低压差转换器与交换式转换器比较
  目前两种常用的步降拓扑是线性,即低压差转换器(LDO)和交换式(降压)转换器。理想情况下,交换式拓扑的效率可达到100%。在考虑功率损耗之后,效率可能会降到85%与95%之间。公式1可用于计算LDO的效率。当IGND远小于IOUT时,可以忽略它。因此,基于LDO的锂离子电池充电器的效率可以简化为VOUT与VIN的比,如公式2和3中所示。
  。。。。。。公式1
  。。。。。。公式2
  。。。。。。。公式3
  此外,在典型的恆流(CC)充电模式期间,效率会从60%上升到84%。对于恆压(CV)充电模式,效率将保持在84%。因而,当输入电压约为5V时,在单节锂离子电池充电器设计中,LDO拓扑可良好地工作。由于省略了电感器,LDO拓扑还可降低成本,并且可避免与交换式拓扑有关的EMI难题。但是,如果需要高于1A的快速充电电流,则应考虑交换式拓扑。公式4给出了一个对此进行说明的功耗计算公式。
  PDISSIPAON=ICHARGE&(VIN&VOUT) =2A(5V&3V)=4瓦。。。。。。公式4
  在此一範例中,选择的电池充电电流为2安培(A)、电池电压为3V,以说明CC模式下的最坏情况。选择的输入电压为5V,以简化计算。在设计系统时,应考虑误差最大的情况。即使是对于额定热阻为35℃/瓦(W)的4毫米(mm)&4毫米QFN封装,也很难散去4瓦的功耗,如公式5所示。
  35℃/瓦&4瓦=144℃。。。。。。公式5
  当室温为25℃时,加上144℃会使系统中的温度达到169℃。169℃的温度超出了晶片的典型过温关断阀值。对于良好设计的锂离子电池充电管理IC,应包含温度回馈电路,在温度开始上升到阀值时降低充电电流。
  低阶线性锂离子电池 充电器成本低
  低阶线性锂离子电池充电器通常成本很低,接脚数很少,且只需要很少的被动元件。它们通常採用诸如SOT-23、MSOP和DFN之类的封装。随着半导体技术的成熟,大多数低阶线性电池充电器都进行了完全整合。典型的接脚数介于5~10接脚之间。
  对锂离子电池进行安全充电通常是低阶充电器的基本目标,也是唯一目标。如图1所示,简单的电池充电器只须要使用一个5接脚个元件,为正常工作,最少需要叁个元件,即一个输入电容、一个输出电容和一个可程式化的电阻器。
  图1 典型的低阶线性锂离子电池充电器
  此外,可能还有其他接脚,用于额外状态指示、电源状况指示、电池温度监视、计时器和逻辑电流控制之类的功能。
  左右单节锂离子电池充电效能 USB埠设计良莠至关重要
  除连结周边与电脑外,USB协定还能以较低成本实现高速传输。通过USB埠将设备和周边与电脑进行连接已成为最流行的方式。USB的电压範围为4.75?5.25V,非常适合用于恢復单节锂离子电池或电池组的能量。目前有许多方法可用于对单节锂离子电池进行充电。表3即列出了基于USB埠设计单节锂离子电池充电器的一些基本方法。
  首先第一种方法採用低功率USB埠来提供固定充电电流。该方法最终的电流通常低于低速USB埠的绝对最大电流(即100mA)。由于电阻容差、充电电流和电源电流的塬因,该充电电流通常低于90mA。该方法只是简单地将USB埠作为额定参数为5V、100mA的电源。为了利用高速USB埠,可使用外部金属氧化物半导体场效电晶体(MOSFET)在闸极驱动,为低电位或高电位时设置两种不同的充电电流。高速USB埠允许的绝对最大电流为500mA,但USB埠通常是以低速启动,直到完成验证为止。
  通过可设置两种不同充电电流的整合MOSFET,可简化这种设计,并通过它可提供预设的充电电流,或以可程式电阻器设计充电电流。如图2所示,该示範提供了叁种不同的充电电流设置,并可在墙式电源适配器和USB埠之间无缝的切换。存在墙式电源适配器时,最大充电电流可很容易超过高速USB埠的500mA。
  图2 双输入锂离子电池充电器架构图
  当只有USB电缆时,充电电流将取决于MOSFET的闸极驱动电流为逻辑高电位还是低电位。一些设计只须要一个输入电源,但可通过介面之间的通讯来设置不同的输入类型。通常,出于与低速USB埠相同的塬因,而高速USB埠的预设USB充电电流会低于450mA。为了安全考虑及满足USB规範,正确的设计方法还应限制来自USB埠的输入电流。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
博世从市场、技术、成本和投资四大方面出发,得出结论认为当前大规模投资生产当前的液态电解液技术的锂电池...
日前,在中国化学与物理电源行业协会六届六次理事会议上,刘彦龙秘书长特别强调了 锂电池 三元材料 专利...
随着新能源汽车快速发展,固态锂电池在电动汽车市场供不应求。由此,多家上市公司加快布局固态锂电池领域
据OilPrice网站报道,电动汽车革命正在推动锂离子电池的蓬勃发展。到2022年,锂离子电池的市场...
扎根在以动力电池为核心的产业链上,不得不在政策的大起大落中,冷眼看行业;在资本的风起云涌中,预判格局...
星恒电源苏滁现代产业园项目占地面积700亩左右,计划总投资100亿元,分四期建设。其中一期项目投资3...
目前动力锂电池依据封装形式差异可分为三类形态:圆柱、方形和软包,其中圆柱和方形也统称为硬壳电池。三种...
目前锂电池技术的限制使得厂商在外观与续航上必须做出选择,如果你想要续航更持久的手机,就必须扩大锂电池...
众所周知,泄漏会让锂电池出现电解液挥发、水分渗入、鼓胀等诸多问题,进而导致锂电池性能下降乃至起火爆炸...
目前,国内新能源汽车仍然在采用磷酸铁锂(BYD为主)和三元锂电池,车型续航里程基本上都能够达到300...
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个...
放眼电子器件市场,移动设备可以说是规模最大也最为复杂的一个。据统计,2018年人们的日常生活中会用到...
杜比实验室(纽交所代码:DLB)今日宣布与华为的合作伙伴关系,在华为P20和华为P20 Pro中采用...
励建炬表示,科达利自成立之初就坚持定位于高端市场,采取重点领域的大客户战略,避免与业内其它企业在中低...
原材料价格不断上涨,动力电池产业链中、下游企业成本压力持续增大。从业绩预告及年报情况看,上、中、下游...
本文主要介绍了锂电池有电压无电流如何修理。单体电压显示值较其余单体偏低,测量单体实际电压值进行比对,...
本文主要介绍了tp4056充电保护电路图(八款tp4056锂电池充电电路详解)。TP4056 是专门...
本文主要介绍了锂电池管理芯片tp4056中文资料及应用电路图汇总。TP4056 是专门为一节锂离子或...
锂离子电池的正极为磷酸铁锂材料,其安全性能与循环寿命有较大优势,这些也正是动力电池最重要的技术指标之...
在这3天的展示中,电极电阻测试仪以及4探针测量电阻法受到了广大客户的青睐。特别是电极电阻测试仪作为一...
先导智能作为国际知名的锂电池装备制造商,坚持不懈地践行工匠精神,无论从技术研发、产品品质还是企业管理...
雄韬股份氢燃料电池产业园开工庆典在武汉经开区举行,该项目一期投资12亿元,总投资115亿元。
感知技术演进 记录产业变迁关注「高工锂电技术与应用」
锂电行业的大事件莫过于日本电池展的举办。在本次展会上,有哪些看不起眼的锂电池材料技术或许会颠覆中国锂...
锂辉石精矿中氧化锂含量约5.0%~ 8.5%。目前锂辉石的提锂产品主要为碳酸锂,其工艺主要有硫酸法生...
从描述来看,它应该是支持基础的导航操作。然而微软似乎并不只将创新做到这里,它在背部也配备了一块触控式...
双层高速涂布机是锂电池各工序中最大最重的设备之一,长度约80米,宽度8米,高度7米,重量达到两百吨,...
在磷酸铁锂电池一家独大的情况下,在2018年的申报产品中却出现了多款搭载三元电池的新能源客车产品,这...
本文主要介绍了四款自制锂电3.7v升9v电路图大全详解。最大输出电流为20A,最高充电电压为80V....
覆铜箔层压板及印制线路板用铜箔:CCL及PCB是铜箔应用最广泛的领域。PCB目前已经成为绝大多数电子...
传统锂离子电池采用有机液体电解液,在过度充电、内部短路等异常的情况下,电池容易发热,造成电解液气胀、...
出售宁波银行股票、推进服装业务相关上市,专注电池材料主业发展。2017年度,公司出售所持宁波银行约2...
这仅仅是循环了53次后的数据,随着循环次数的增加,较高截止电压下的材料由于衰降速度比较快,按照上图的...
随着人们对新能源汽车动力电池各项性能的要求不断提高,锂电池不断迭代升级,开始步入高镍三元时代成为一个...
业内分析认为,2018年钴供应缺口或将得到一定弥补但仍将维持偏紧状态,国内钴价易受国际钴价变动和投资...
科研人员和电池厂商需要通过不断改进工艺和技术提高锂电池电芯的安全性,BMS系统厂商要充分了解电池的性...
简单来说,目前锂电池的投资投入产出比是危险的,如下所示,前面几家和后面几家差距在拉大了,严格来说,最...
铝空气电池的化学反应与锌空气电池类似,铝空气电池以高纯度铝Al(含铝99.99%)为负极、氧为正极,...
随着我国新能源汽车销量的不断攀升,以及电池技术的不断更新。作为新能源汽车的心脏——动力电池,也由于原...
随着移动行业向下一代网络迈进,整个行业将面临射频组件匹配,模块架构和电路设计上的挑战。 直到早期的L...
电解液应用技术发展以配套电池能量密度提升和提升现有体系性能并重,所以我们根据以后电池的发展趋势列出了...
锂电池主要使用的电解质有高氯酸锂、六氟磷酸锂等。但用高氯酸锂制成的电池低温效果不好,有爆炸的危险,日...
2月7日,孚能科技宣布实现C轮融资50亿元人民币,投资方包括中国风投基金、国新国信东吴海外基金、兴业...
中国新能源汽车市场发展迅速,锂电行业格局也发生了重大变化,产业链分化加剧,一方面是投扩产频频,一方面...
消费电子、汽车和电网存储是目前电池主要应用的三个行业。我把这三个行业称为人们与电池连接的三大领域。每...
圆柱锂电池分为钴酸锂、锰酸锂、三元材料。三种材料体系电池各有不同的优势,电池广泛应用于:笔记本电脑、...
合肥新能源电动公交起步较早,早在日合肥公交集团就开通了18路公交线,该线由30辆纯...
能量密度是指在一定的空间或质量物质中储存能量的大小。电池的能量密度也就是电池平均单位体积或质量所释放...
随着手机,智能无线设备和电动汽车的快速发展,锂电池的市场需求越来越广,锂电池的生产制造效率也越来越高...
锂电池的结构中,隔膜是关键的内层组件之一。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量...
充电充电前锂离子嵌在正极材料的层状结构中开始充电后,正极材料失去电子,锂离子从正极材料中脱嵌而出。
动力锂电池,已经稳稳占据了电动汽车电源江湖老大的地位。使用寿命长,能量密度高,还极具改进潜力。安全性...
作为锂离子电池的重要组成部分的导电剂, 虽然其在电池中所占的份量较少,但很大程度地影响着锂离子电池的...
腾讯数码讯(Databoy)浦项科技大学的研究团队开发出一种新电极材料,有了这种材料,锂离子电池6分...
我们常常会说到三元锂电池或者铁锂电池,这些都是按照正极活性材料来给锂电池命名的。本文汇总六种常见锂电...
动力电池即将迎来首批退役潮,预计2020 年锂电池回收市场整体规模将达到156 亿元。2017-20...
盘点今年负极市场发现,涨价、资本升级、电石墨化加工、扩产成为这一细分领域四大关键词。
锂电池的发展路径。锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。锂电池大致可分为...
在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。...
今年补贴继续退坡,电池企业议价能力将更为强势。而随着杉杉股份等领军企业规模化产能的逐步建设和释放,这...
硅-碳复合材料以其优异循环性能和高容量特性,成为目前锂离子电池负极材料领域研究的热点,有望代替石墨成...
未来五年,新能源汽车用锂离子电池市场年平均增长率在50%左右。锂离子电池技术进步,主要来自关键电池材...
其实,了解化学电源发展历史的读者都应该明白,二次电池和燃料电池在过去的几十年里都没有真正“冷”过,...
如果我们仔细分析过去20年里,欧盟(EU)和美国能源部(DOE)在锂电和燃料电池领域基础研究和产业政...
电解液是电池正负极之间起传导作用的离子导体,由电解质锂盐、高纯度的有机溶剂和必要的添加剂等原料以一定...
锂电池检测系统技术较为复杂,涉及测控技术、能量变换技术、功率变换技术、系统集成及制程工艺等,相应技术...
GGII预计2018年动力电池产量将超过65GWh,三元动力电池占比超过65%;到2018年底,国内...
本田公司对外宣布,他们与崎玉县产业技术综合中心合作,开发出了世界上第一块可以实际应用的镁充电电池。
极片表面涂层材料的压实密度与电池的电化学性能有很重要的关系,合理的压实密度可有效增加电池的电化学性能...
一般来说传统锂电池在-20℃发挥出50%性能就已经算是最优水平,但是今日报道中国科学家研发成功零下7...
新能源汽车领域的日趋火爆,吸引着国内外大量企业前赴后继奔赴“战场”,并不新鲜的锰酸锂技术却似乎又开始...
天冷了,原本能量满满的锂电池,容量上都要打一个折扣,锂电池似乎进入了冬眠状态,这给新能源汽车以及数码...
今年的最强冷空气,陆续“到货”,各种电动产品续航仿佛被“动”住了,RND电动滑板车也不意外出现续航下...
随着2016年我国新能源车骗补的尘埃落定,2017年新能源汽车于3月份后开始进入加速发展态势,而全球...
由于不同类型的锂电池在各方面性能差异很大,市场上锂电池的龙头企业主要来源中日韩三国,各家对锂电池类型...
对于锂电而言这几个主要的技术指标实际上具有“跷跷板效应”,按起葫芦浮起瓢,某一个指标的提升往往是建立...
虽然我们经常看到一些新电池技术的出现,但是想要真正大规模的商用还是太远,换句话说,未来时间里还会是 ...
新能源汽车的推广和普及进一步拉动了新电池技术的需求。如今巨头纷纷抢购钴材料,锂电池的需求还在持续增长...
本文主要详细对锂电池和燃料电池低温性能以及可靠性上进行比较。低温对锂离子动力电池和PEMFC电堆的影...
本文开始介绍了锂离子电池结构和锂离子电池工作原理,其次介绍了软包锂电池参数及优缺点,最后阐述了锂电池...
笔者开发了一种用于锂电池粉体活性材料的完全无尘清洁合浆技术,并进行了相应的知识产权保护布局。通过在锂...
锂是一种金属元素,其化学符号为Li(其英文名为lithium),是一种银白色、十分柔软、化学性能活泼...
锂离子电池的输出电压等于其正极电压和负极电压的差值,所以,锂离子电池负极的脱嵌锂电压决定了电池的输出...
2017年中国新能源汽车累计生产79.4万辆,销售77.2万辆,比上年同期分别增长53.8%和53....
几乎所有使用锂电池的电动汽车都会规定不能将电池的全部容量用于行驶,总是会留下几千瓦时作为电池的缓冲。...
本文详细介绍了2017锂电产业链和资本市场表现回顾、同时介绍了细分行业的市场,最后对于锂电行业的投资...
谈及当今全球锂电产业的基本格局,大家首先想到的是中日韩三足鼎立的战略局面。至于这个基本战略格局是如何...
2016年中国锂电产业链产值突破2000亿元,同比2015年增长超过40%。其上游矿产、四大关键材料...
昨日,受新能源汽车补贴大幅退坡传闻影响,锂电池板块遭受重挫。盐湖股份、先导智能、创新股份等6只股票跌...
伴随着国家对动力电池能量密度要求的增高,产品进入市场的门槛同时也被提高,据调查得知,目前动力电池的全...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-坚持积累、缩小差距、一直走在成为大神的路上、
锂电池基本原理解析:充电及放电机制
电池充电最重要的就是这三步:
  第一步:判断电压&3V,要先进行预充电,0.05C电流;
  第二步:判断 3V&电压&4.2V,恒流充电0.2C~1C电流;
  第三步:判断电压&4.2V,恒压充电,电压为4.20V,电流随电压的增加而减少,直到充满。
  一、锂电池
  1、简述锂电池以及工作原理
  自1990年问世以来,因其卓越的性能得到了迅猛的发展,并广泛地应用于社会。锂离子电池以其它电 池所不可比拟的优势迅速占领了许多领域,象大家熟知的移动电话、笔记本电脑、小型摄像机等等。
  目前锂电池公认的基本原理是所谓的“摇椅理论”。锂电池的冲放电不是通过传统的方式实现电子的转移,而是通过锂离子在层壮物质的晶体中的出入,发生能量变化。在正常冲放电情况下,锂离子的出入一般只引起层间距的变化,而不会引起晶体结构的破坏,因此从冲放电反映来讲,锂离子电池是一种理想的可逆电池。在冲放电时锂离子在电池正负极往返出入,正像摇椅一样在正负极间摇来摇去,故有人将锂离子电池形象称为摇椅电池。
  我们经常说的锂离子电池的优越性是针对于传统的镍镉电池(Ni/Cd)和镍氢电池(Ni/MH)来讲的。 具有工作电压高比能量大循环寿命长自放电率低无记忆效应等优点。
  2、锂电池日常使用过程中的常识
  (1)、误区:“电池激活,前三次充电12小时以上”
  对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充 12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。经过抽样调查,可以看出有相当一部分人混淆了两种电池的充电方法。
  锂电池和镍电池的充放电特性有非常大的区别,所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。
  (2)、 不益长时间充电、电池完全用完再充电
  锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。如果锂电池在充满后,放在充电器上也是也不再充电。
  超常时间充电和完全用空电量会造成过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来。
  (3)、电池寿命
  关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下(DOD是放电深度的英文缩写):
  循环寿命 (10%DOD):& 1000次
  循环寿命 (100%DOD):& 200次
  从上面数据可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。当然 如果折合到实际充电的相对总容量10%*0%*200=200,后者的完全充放电还是要比较好一 些。但是锂电池的寿命主要体现在充放电周期上,这个周期是一个绝对概念,上次使用了30%电力,充满电,下次又使用了70%的电力,又充满电,这个刚好是 一个充电周期。所以还是遵循锂电池发明者的口号“即用即充,即充即用”的方法使用锂电池。
  (4)、定期深度充放电进行 电池校准
  锂离子电池一般都带有管理芯片和充电控制芯片。其中管理芯片中有一系列的寄存器,存有容量、 温度、ID 、充电状态、放电次数等数值。这些数值在使用中会逐渐变化。使用说明中的“使用一个月左右应该全充放一次”的做法主要的作用应该就是修正这些寄存器里不当 的值。
  二、锂电池的充电方式是限压横流方式
  主要分三步完成:
  第一步:判断电压&3V,要先进行预充电,0.05C电流;
  第二步:判断 3V&电压&4.2V,恒流充电0.2C~1C电流;
  第三步:判断电压&4.2V,恒压充电,电压为4.20V,电流随电压的增加而减少,直到充满。
  其实今天我就是这一点有些不懂,在网上查了一下,然后上面那些做为常识了解。
  充电开始时,应先检测待充电电池的电压,如果电压低于3V,要先进行预充电,充电电流为设定电流 的1/10,一般选0.05C左右。电压升到3V后,进入标准充电过程。标准充电过程为:以设定电流进行恒流充电,电池电压升到4.20V时,改为恒压充电,保持充电电压为4.20V。此时,充电电流逐渐下降,当电流下降至设定充电电流的1/10时,充电结束。
  一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。
  术语解释:充放电电流一般用C作参照,C是对应电池容量的数值。电池容量一般用Ah、mAh表示,如M8的电池容量1200mAh,对应的C就是1200mA。0.2C就等于240mA。
  下面是锂电池典型充电曲线图:
  三、锂电池的放电,对电池来说,正常使用就是放电过程
  锂电池放电只需要注意很少的几点:
  1、放电电流不能过大, 过大的电流导致电池内部发热,有可能会造成永久性的损害;
  2、绝对不能过放电!锂电池最怕过放电,一旦放电 电压低于2.7V,将可能导致电池报废。
  下面是一般锂电池的典型放电曲线图:
  从典型放电曲线图上可以看出,电池放电电流越大,放电容量越小,电压下降更快。
  所以,一般情况下电池大负荷工作后,减少负荷会出现电压回升现象,就是所说的“回电”现象。
  给个图看看,这个放电曲线图在放电过程中停了一下,出现了“回电”。
没有更多推荐了,}

我要回帖

更多关于 5v充电器充4.2v电池 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信