在五六年前,老家签户漯河市了一份开采稀土矿的合同。在今年的十月份要动工了。怎么样才能保障农民的合法利益?

兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳-氧同位素地球化学特征研究-Geochemical characteristics of trace elements, fluid inclusions and carbon-oxygen isotopes of calcites in the Jinding Zn-Pb deposit, Lanping, China
<meta name="Description" content="金顶铅锌矿矿床成因一直受到广泛关注,但至今没有达成共识,其重要原因之一是对矿床成矿流体性质和来源认识的局限。本文以金顶铅锌矿床成矿早期脉状方解石和晚期结核状方解石为研究对象,系统开展了微量元素、流体包裹体和碳-氧同位素地球化学研究,在此基础上探讨了该矿床成矿流体的性质和可能的来源。研究发现,虽然2种产状方解石都以轻稀土富集、轻重稀土显著分异、配分模式向右陡倾为特征,并且具有相似的Mg、Fe和Mn含量,但它们在微量元素、流体包裹体和碳-氧同位素地球化学特征上亦存在显著差异。脉状方解石相对于结核状方解石稀土元素总量较高,富集Co、Ni、(W)、Mo、Bi;脉状方解石流体包裹体显示相对高温高盐度的特征(Th>250℃,S>8.0% NaCleqv),而结核状方解石流体包裹体相对低温低盐度(Th<200℃,S<8.0% NaCleqv); 脉状方解石的碳同位素组成(δ13CPDB=-22.95‰~-2.56‰)较分散,具有多源性,而结核状方解石碳同位素组成(δ13CPDB=-7.02‰~-6.18‰)相对集中,二者的氧同位素组成(δ18OSMOW=20.16‰~23.49‰)与沉积岩类似。综合分析认为,金顶铅锌矿成矿期脉状和结核状方解石虽然均属热液成因,但它们分别代表了2类不同性质的热液体系,早期成矿流体为多源的混合流体,成矿过程中可能有深源组分的加入,而晚期成矿流体以大气降水为主。;The metallogenic mechanism of the Jinding Zn-Pb deposit is always of catholic concern, but it cannot reach a consensus. One of important causes is ascribed to limiting understanding in ore-forming fluid properties and its sources. Therefore, systematic geochemical studies of trace elements, fluid inclusions and carbon-oxygen isotopes on vein calcites and nodule calcites, formed in early and late mineralization respectively, have been carried out to investigate the ore-forming fluid nature and its potential sources. It is discovered that both vein and nodule calcites are characterized by sharing sharp right-dipped chondrite-normalized REE patterns with LREE enriched and LREE-HREE distinctively differentiated, as well as similar Mg, Fe and Mn contents. However, distinct discrepancies exist between two kinds of calcite in trace elements, fluid inclusions and carbon-oxygen isotopes. Relative to nodule calcites, vein calcites have higher ∑REE and are rich in Co-Ni-(W)-Mo-Bi. Fluid inclusions in vein calcites show relative high temperature-high salinity (Th>250℃, S>8.0% NaCleqv), while that in nodule calcites display relative low temperature-low salinity (Th<200℃, S <8.0% NaCleqv). Besides, carbon isotopes spread dispersively (δ13CPDB=-22.95‰~-2.56‰), indicative of carbonic multi-sources for vein calcites, but concentrate (δ13CPDB=-7.02‰~-6.18‰) for nodule calcites. Two groups of oxygen isotopes (δ18OSMOW=20.16‰~23.49‰) resemble sedimentary rocks. To be comprehensively analyzed, vein calcites and nodule calcites, both due to hydrothermalism, represent two different hydrothermal systems: early ore-forming fluid resulting from multi-sources with deep components added in and late ore-forming fluid dominated by meteoric water."/>
&|&&|&&|&&|&&|&&|&&|&&|&&|&
唐永永,毕献武,和利平,武丽艳,冯彩霞,邹志超,陶琰,胡瑞忠. 2011. 兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳-氧同位素地球化学特征研究. 岩石学报, 27(9):
兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳-氧同位素地球化学特征研究
作者单位E-mail&,,&&&,&&&,&&&,&&&,&&&,,&&&,&&&,&&
基金项目:本文受国家重点基础研究发展规划项目()和中国科学院重要方向项目群项目(KZCX2-YW-Q04-01)联合资助.
&&&&&&金顶铅锌矿矿床成因一直受到广泛关注,但至今没有达成共识,其重要原因之一是对矿床成矿流体性质和来源认识的局限。本文以金顶铅锌矿床成矿早期脉状方解石和晚期结核状方解石为研究对象,系统开展了微量元素、流体包裹体和碳-氧同位素地球化学研究,在此基础上探讨了该矿床成矿流体的性质和可能的来源。研究发现,虽然2种产状方解石都以轻稀土富集、轻重稀土显著分异、配分模式向右陡倾为特征,并且具有相似的Mg、Fe和Mn含量,但它们在微量元素、流体包裹体和碳-氧同位素地球化学特征上亦存在显著差异。脉状方解石相对于结核状方解石稀土元素总量较高,富集Co、Ni、(W)、Mo、Bi;脉状方解石流体包裹体显示相对高温高盐度的特征(Th>250℃,S>8.0% NaCleqv),而结核状方解石流体包裹体相对低温低盐度(Th<200℃,S<8.0% NaCleqv); 脉状方解石的碳同位素组成(δ13CPDB=-22.95‰~-2.56‰)较分散,具有多源性,而结核状方解石碳同位素组成(δ13CPDB=-7.02‰~-6.18‰)相对集中,二者的氧同位素组成(δ18OSMOW=20.16‰~23.49‰)与沉积岩类似。综合分析认为,金顶铅锌矿成矿期脉状和结核状方解石虽然均属热液成因,但它们分别代表了2类不同性质的热液体系,早期成矿流体为多源的混合流体,成矿过程中可能有深源组分的加入,而晚期成矿流体以大气降水为主。
英文摘要:
&&&&&&The metallogenic mechanism of the Jinding Zn-Pb deposit is always of catholic concern, but it cannot reach a consensus. One of important causes is ascribed to limiting understanding in ore-forming fluid properties and its sources. Therefore, systematic geochemical studies of trace elements, fluid inclusions and carbon-oxygen isotopes on vein calcites and nodule calcites, formed in early and late mineralization respectively, have been carried out to investigate the ore-forming fluid nature and its potential sources. It is discovered that both vein and nodule calcites are characterized by sharing sharp right-dipped chondrite-normalized REE patterns with LREE enriched and LREE-HREE distinctively differentiated, as well as similar Mg, Fe and Mn contents. However, distinct discrepancies exist between two kinds of calcite in trace elements, fluid inclusions and carbon-oxygen isotopes. Relative to nodule calcites, vein calcites have higher ∑REE and are rich in Co-Ni-(W)-Mo-Bi. Fluid inclusions in vein calcites show relative high temperature-high salinity (Th>250℃, S>8.0% NaCleqv), while that in nodule calcites display relative low temperature-low salinity (Th<200℃, S <8.0% NaCleqv). Besides, carbon isotopes spread dispersively (δ13CPDB=-22.95‰~-2.56‰), indicative of carbonic multi-sources for vein calcites, but concentrate (δ13CPDB=-7.02‰~-6.18‰) for nodule calcites. Two groups of oxygen isotopes (δ18OSMOW=20.16‰~23.49‰) resemble sedimentary rocks. To be comprehensively analyzed, vein calcites and nodule calcites, both due to hydrothermalism, represent two different hydrothermal systems: early ore-forming fluid resulting from multi-sources with deep components added in and late ore-forming fluid dominated by meteoric water.
关键词:&&&&&&&&&&
黔ICP备号-2
主办单位:中国矿物岩石地球化学学会
印刷版(Print): ISSN
网络版(Online): ISSN
单位地址:北京9825信箱/北京朝阳区北土城西路19号
手机扫一扫中国科学院南海海洋研究所机构知识库
Stay signed in
BackCurrent DDC"+this.innerText+"";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data)
{$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
$(".navBg").click(function()
var arrow = $(this).find("span.arrow");
if(arrow.hasClass("up"))
arrow.removeClass("up");
arrow.addClass("down");
else if(arrow.hasClass("down"))
arrow.removeClass("down");
arrow.addClass("up");
$(this).parent().find(".menus").toggle();
var convergedHTML="none";
var url="'"+document.location+"'";
var isKOS="false";
var isConvergeFieldStr="false";
var index=url.indexOf("simple-search");
var filed=$("#tfield1").attr("value");
if(isKOS=="true" && isConvergeFieldStr=="true" && (index!=-1) && (convergedHTML=="" || convergedHTML.indexOf("无")!=-1))
var kosAreaHTML="";
$("#list_2").html("DDC Clustering"+kosAreaHTML);
var covergeURL=document.location+"&converge=true"+"&rnd="+new Date().getTime();
var divConvergeHeightOld=$("#list_2").height();
$.get(covergeURL,
function(data){
if(data.substring(0,2)=="ok")
data=data.substring(3);
$("#list_2").html(data+kosAreaHTML);
$("#list_2").html("无"+kosAreaHTML);
/*if(data.indexOf("无")!=-1)
$("#list_2").height(20);
$("#list_2").width("auto");
var divConvergeHeightNew=$("#list_2").height();
var heightDiff=200-divConvergeHeightO
if(divConvergeHeightNew>=200)
$("#tdConverge").height(200);
$("#LeftPane").height($("#LeftPane").height()+heightDiff);
$("#RightPane").height($("#LeftPane").height());
$("#MySplitter").height($("#LeftPane").height());
$(".vsplitbar").height($("#LeftPane").height());
document.getElementById("LeftPane").style.height=$("#LeftPane").height();
document.getElementById("RightPane").style.height=$("#LeftPane").height();
document.getElementById("MySplitter").style.height=$("#LeftPane").height();
alert(document.getElementById("MySplitter").style.height);
$(".converge").css("cursor","pointer");
$(".converge").css("color","#1F5B97");
$(".converge").mouseover(function(){
$(this).addClass("over");
}).mouseout(function(){
$(this).removeClass("over");})
$(".converge").click(function(){
//$("#tabNav").css("display","none");
$("#tabSearchResult").css("display","none");
$("#convergeResult").html("");
var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
题名: 大冶-武山矿化夕卡岩的稀土元素地球化学研究
卷: 36, 期:4, 页:400-412部门归属: [1]中国科学院南海海洋研究所,广东广州]中国科学院广州地球化学研究所,广东广州]中国科学院研究生院,北京]大冶铁矿地质测量检测科,湖北大冶435006
项目归属: 海洋地质
摘要:  用ICP-MS分析了25个含矿夕卡岩样品的REE含量,其中对8个样品的石榴子石等矿物中的熔融包裹体进行了均一温度测定,还对5个夕卡岩样品石榴子石中的熔融包裹体进行了电子探针分析。在这些样品的石榴子石、辉石或方解石中都观察到熔融包裹体。夕卡岩的球粒陨石标准化REE分布模式具有两个突出特点:其一是以富集轻稀土元素(LREE)右倾为特征;其二是多数以具有Eu正异常为特征。夕卡岩球粒陨石标准化REE分布模式有三种类型:第一类型显示斜率不大的右倾直线;第二类型具有以Ce为峰值的折线的特征,即REE线段向上凸,在Ce处有一极大值(个别无峰值,LREE曲线向上凸,呈穹隆状);第三类型为过渡型REE分布模式。在当今REE资料有限的情况下,利用稀土元素地球化学特点鉴别夕卡岩成因是困难的。
Appears in Collections:
Files in This Item:
File Name/ File Size
Content Type
大冶-武山矿化夕卡岩的稀土元素地球化学研究.pdf(861KB)----开放获取--
Recommended Citation:
赵劲松;邱学林;赵斌;涂湘林;虞珏;芦铁山.大冶-武山矿化夕卡岩的稀土元素地球化学研究,地球化学,):400-412
Google Scholar
CSDL cross search
Related Copyright Policies
Social Bookmarking
大冶-武山矿化夕卡岩的稀土元素地球化学研究.pdf
Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.&BackCurrent DDC"+this.innerText+"";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
var convergedHTML="none";
var url="'"+document.location+"'";
var isKOS="false";
var isConvergeFieldStr="false";
var index=url.indexOf("simple-search");
var filed=$("#tfield1").attr("value");
isKOS = "false";
if(isKOS=="true" && isConvergeFieldStr=="true" && (index!=-1) && (convergedHTML=="" || convergedHTML.indexOf("无")!=-1))
$("#list_2").html("DDC Clustering");
var covergeURL=document.location+"&converge=true"+"&rnd="+new Date().getTime();
var divConvergeHeightOld=$("#list_2").height();
$.get(covergeURL,
function(data){
if(data.substring(0,2)=="ok")
data=data.substring(3);
var kosAreaHTML="";
$("#list_2").html(data+kosAreaHTML);
$("#list_2").html("无");
/*if(data.indexOf("无")!=-1)
$("#list_2").height(20);
$("#list_2").width("auto");
var divConvergeHeightNew=$("#list_2").height();
var heightDiff=200-divConvergeHeightO
if(divConvergeHeightNew>=200)
$("#tdConverge").height(200);
$("#LeftPane").height($("#LeftPane").height()+heightDiff);
$("#RightPane").height($("#LeftPane").height());
$("#MySplitter").height($("#LeftPane").height());
$(".vsplitbar").height($("#LeftPane").height());
document.getElementById("LeftPane").style.height=$("#LeftPane").height();
document.getElementById("RightPane").style.height=$("#LeftPane").height();
document.getElementById("MySplitter").style.height=$("#LeftPane").height();
alert(document.getElementById("MySplitter").style.height);
$(".converge").css("cursor","pointer");
$(".converge").css("color","#1F5B97");
$(".converge").mouseover(function(){
$(this).addClass("over");
}).mouseout(function(){
$(this).removeClass("over");})
$(".converge").click(function(){
//$("#tabNav").css("display","none");
$("#tabSearchResult").css("display","none");
$("#convergeResult").html("");
var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
alert('ddd');
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
function getCaptcha(type)
var imgCodeName="img-code-objection";
var inputCodeName="input-code-objection";
var imgCodeValidatingName="img-validate-code-objection";
if(type=="feedback")
imgCodeName="img-code-feedback";
inputCodeName="input-code-feedback";
imgCodeValidatingName="img-validate-code-feedback";
var imgCode=document.getElementById(imgCodeName);
var inputCode=document.getElementById(inputCodeName);
var imgCodeValidating=document.getElementById(imgCodeValidatingName);
imgCode.src=""+"/captcha?type="+type+"&mun="+Math.random();
inputCode.value="";
imgCodeValidating.style.display="none";
//var type=obj.attr("id")=="img-code-feedback"?"feedback":"objection"
//$(obj).attr("src", );
//obj.src = ""+"/captcha?mun="+Math.random();
function validate(obj, typeStr)
var imgObj=$("#img-validate-code-objection");
var inputCodeName="input-code-objection";
var inputC
if(typeStr=="feedback")
imgObj=$("#img-validate-code-feedback");
inputCodeName="input-code-feedback";
inputCode=document.getElementById(inputCodeName);
imgObj.css("display", "block");
type:"POST",
url:""+"/captcha",
data:{num:Math.random(), code:$(obj).val(), type:typeStr},
dataType: "html",
beforeSend:function(){imgObj.attr("src",""+"/image/indicator.gif");},
success:function(data){
if(data=="true")
imgObj.attr("src",""+"/image/pic_right.gif");
imgObj.attr("title","");
//$("#submitObjection").attr("disabled","");
//$("#submitObjection").attr("title","");
imgObj.attr("src",""+"/image/error_cross.gif");
imgObj.attr("title","验证码错误,请重新输入。");
//getCaptcha(typeStr);
//$("#submitObjection").attr("disabled","disabled");
//$("#submitObjection").attr("title","验证码错误,请重新输入。");
Stay signed in
Content Type
题名:&碱性花岗岩中稀土矿物微观地质异常及其意义
发表日期:&
摘要:&四川冕西霓石碱性花岗岩中的稀土矿物主要为钙稀土氟碳酸盐矿物系列 ,通过选区电子衍射 (SAED)和高分辨透射电子显微术 (HRTEM )研究发现该系列矿物晶体结构中广泛发育复杂多样的微观地质异常现象 ,其主要类型有 :( 1)由该系列两个端员矿物氟碳铈矿结构层(B)与直氟碳钙铈矿结构层 (S)以不同比例沿c轴方向有序堆垛形成的BmSn型规则混层结构 ;( 2 )无序堆垛形成的有序 -无序结构晶畴 ;( 3 )由堆垛层错形成的无序混层结构、氟碳钙铈矿中不同多型体间的共格连生结构和相转变等 ;( 4 )氟碳铈矿结构中的平行于 [0 0 0 1]方向的平移畴及一维无公度调制结构 ,该类调制结构可能是由于矿物中原子占位有序度的变化而形成的无序结构状态 .
Appears in Collections:
Files in This Item:
There are no files associated with this item.
Recommended Citation:
孟大维,龚俊锋,于梅花. 碱性花岗岩中稀土矿物微观地质异常及其意义[J]. 地球科学,6-500.
Google Scholar
CSDL cross search
Scirus search
Related Copyright Policies
Social Bookmarking
Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.&辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征-Geochemical characteristics of Banded Iron Formations in Liaoning-eastern Hebei area:Ⅱ Characteristics of rare earth elements
<meta name="Description" content="辽冀地区(鞍山-本溪地区和冀东地区)位于华北克拉通北东部,是我国早前寒武纪条带状铁建造(BIFs)最重要的分布区,主要为新太古代Algoma型。本文系统对比了辽冀地区28个铁矿床200件铁矿石样品的稀土元素特征。结果表明:(1)所有样品的稀土元素特征比较相似:稀土元素总量较低,Y/Ho比值较高;经太古宙后平均澳大利亚页岩(PAAS)标准化后呈现重稀土相对富集、轻稀土相对亏损的配分模式,La异常不明显,强烈的Eu正异常和明显的Y正异常,暗示研究区铁矿石成矿物质主要来源于海底高温热液和海水的混合溶液;与冀东地区BIFs相比,鞍本地区Eu异常更为明显,说明鞍本地区BIFs显示更多的热液特征;(2)铁矿石的Ce/Ce*变化范围为0.77~1.09,缺乏明显的Ce负异常,说明其沉积于还原的海水环境;(3)辽冀地区BIFs的稀土元素总量、Eu异常、Y异常和Y/Ho比值变化范围均比较大,可能与BIFs沉积过程中碎屑物质的加入有关;与鞍本地区相比,冀东地区BIFs的Eu正异常、Y正异常程度均小于鞍本地区,热液和海水特征均不明显,Y/Ho比值更接近球粒陨石(26~28),可能暗示冀东地区有更多的碎屑物质的加入。;The Early Precambrian Banded Iron Formations (BIFs) are the most important iron ore resources type in China, and account for approximately 64% of the total identified resources. In China, BIFs are mainly distributed in greenstone belts of the North China Craton, such as Anshan-Benxi (in Liaoning Province), Jidong (in Hebei Province)-Miyun (in Beijing), Wutai (in Shanxi Province), Wuyang (in Henan Province), Huoqiu (in Anhui Province), and Luxi (in Shandong Province). Liaoning-eastern Hebei area (including Anshan-Benxi area and eastern Hebei area) is the study area, which accounts for more than 34% of overall iron ore reserves in China. Anshan-Benxi area includes Anshan, Benxi, and Liaoyang and so on, which is composed of the supracrustal rock (about 30%) and granitic rock (about 70%). Archean Anshan Group is the major ore stratum, iron ore mainly occurs in the Middle and Upper Anshan Group. The rocks have undergone greenschist to amphibolite facies metamorphism. Eastern Hebei area includes Zunhua, Qianxi, Kuancheng, Qinglong, Qianan and so on, which is composed of the crystalline basement and sedimentary cover. Iron ore mainly hosted in the Qianxi Group, Zunhua Group, Luanxian Group and Zhuzhangzi Group. The rock have been strongly migmatized, and metamorphosed to the greenschist to granulite facies. Based on field geological and microscopic studies, we found that there are many differences exist on the ore type, degree of metamorphism, ore formation, and mineral combination between the Anshan-Benxi and the eastern Hebei area. In this study, we mainly report rare earth elements of 200 samples of iron ore from 28 iron deposits in Liaoning-eastern Hebei area. The results show that: (1) All samples show very similar characteristics of total contents of REE and Y: the total contents of REE are very low, but Y/Ho ratios are high. After normalized by Post Archean Australian Shale (PAAS), REE and Y patterns display depletion of light REE relative to heavy REE. Most samples have positive La anomalies, distinct positive anomalies of Eu and Y. All of them suggest that the iron ores may be derived from submarine high temperature hydrothermal fluids and sea water in the studied area. Compared to the eastern Hebei area, the Anshan-Benxi area shows more hydro (2) Although the Ce/Ce* ratios were 0.77~1.09, the lack of true negative Ce anomalies in all samples indicates that BIFs were forme (3) The contents of REE, Eu anomalies, Y anomalies and Y/Ho ratios vary in a large range, which may be associated with the inputing of detrital material during the BIFs formation. The degree of positive anomalies of Eu and Y from samples in the eastern Hebei area are less than that in the Anshan-Benxi area, and Y/Ho ratios are closer to chondrite meteorites (26~28), which also indicating more detrital material joining."/>
&|&&|&&|&&|&&|&&|&&|&&|&&|&
姚通,李厚民,杨秀清,李立兴,陈靖,张进友,刘明军. 2014. 辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征. 岩石学报, 30(5):
辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征
作者单位E-mail&,,,&&&,,&&&,,,&&&,,&&&,,&&&,&&&,&&
基金项目:本文受国家“973”项目()、国土资源部公益性行业科研专项经费项目(、)和地质矿产调查评价项目(8)联合资助.
&&&&&&辽冀地区(鞍山-本溪地区和冀东地区)位于华北克拉通北东部,是我国早前寒武纪条带状铁建造(BIFs)最重要的分布区,主要为新太古代Algoma型。本文系统对比了辽冀地区28个铁矿床200件铁矿石样品的稀土元素特征。结果表明:(1)所有样品的稀土元素特征比较相似:稀土元素总量较低,Y/Ho比值较高;经太古宙后平均澳大利亚页岩(PAAS)标准化后呈现重稀土相对富集、轻稀土相对亏损的配分模式,La异常不明显,强烈的Eu正异常和明显的Y正异常,暗示研究区铁矿石成矿物质主要来源于海底高温热液和海水的混合溶液;与冀东地区BIFs相比,鞍本地区Eu异常更为明显,说明鞍本地区BIFs显示更多的热液特征;(2)铁矿石的Ce/Ce*变化范围为0.77~1.09,缺乏明显的Ce负异常,说明其沉积于还原的海水环境;(3)辽冀地区BIFs的稀土元素总量、Eu异常、Y异常和Y/Ho比值变化范围均比较大,可能与BIFs沉积过程中碎屑物质的加入有关;与鞍本地区相比,冀东地区BIFs的Eu正异常、Y正异常程度均小于鞍本地区,热液和海水特征均不明显,Y/Ho比值更接近球粒陨石(26~28),可能暗示冀东地区有更多的碎屑物质的加入。
英文摘要:
&&&&&&The Early Precambrian Banded Iron Formations (BIFs) are the most important iron ore resources type in China, and account for approximately 64% of the total identified resources. In China, BIFs are mainly distributed in greenstone belts of the North China Craton, such as Anshan-Benxi (in Liaoning Province), Jidong (in Hebei Province)-Miyun (in Beijing), Wutai (in Shanxi Province), Wuyang (in Henan Province), Huoqiu (in Anhui Province), and Luxi (in Shandong Province). Liaoning-eastern Hebei area (including Anshan-Benxi area and eastern Hebei area) is the study area, which accounts for more than 34% of overall iron ore reserves in China. Anshan-Benxi area includes Anshan, Benxi, and Liaoyang and so on, which is composed of the supracrustal rock (about 30%) and granitic rock (about 70%). Archean Anshan Group is the major ore stratum, iron ore mainly occurs in the Middle and Upper Anshan Group. The rocks have undergone greenschist to amphibolite facies metamorphism. Eastern Hebei area includes Zunhua, Qianxi, Kuancheng, Qinglong, Qianan and so on, which is composed of the crystalline basement and sedimentary cover. Iron ore mainly hosted in the Qianxi Group, Zunhua Group, Luanxian Group and Zhuzhangzi Group. The rock have been strongly migmatized, and metamorphosed to the greenschist to granulite facies. Based on field geological and microscopic studies, we found that there are many differences exist on the ore type, degree of metamorphism, ore formation, and mineral combination between the Anshan-Benxi and the eastern Hebei area. In this study, we mainly report rare earth elements of 200 samples of iron ore from 28 iron deposits in Liaoning-eastern Hebei area. The results show that: (1) All samples show very similar characteristics of total contents of REE and Y: the total contents of REE are very low, but Y/Ho ratios are high. After normalized by Post Archean Australian Shale (PAAS), REE and Y patterns display depletion of light REE relative to heavy REE. Most samples have positive La anomalies, distinct positive anomalies of Eu and Y. All of them suggest that the iron ores may be derived from submarine high temperature hydrothermal fluids and sea water in the studied area. Compared to the eastern Hebei area, the Anshan-Benxi area shows more hydro (2) Although the Ce/Ce* ratios were 0.77~1.09, the lack of true negative Ce anomalies in all samples indicates that BIFs were forme (3) The contents of REE, Eu anomalies, Y anomalies and Y/Ho ratios vary in a large range, which may be associated with the inputing of detrital material during the BIFs formation. The degree of positive anomalies of Eu and Y from samples in the eastern Hebei area are less than that in the Anshan-Benxi area, and Y/Ho ratios are closer to chondrite meteorites (26~28), which also indicating more detrital material joining.
关键词:&&&&&&&&
黔ICP备号-2
主办单位:中国矿物岩石地球化学学会
印刷版(Print): ISSN
网络版(Online): ISSN
单位地址:北京9825信箱/北京朝阳区北土城西路19号
手机扫一扫}

我要回帖

更多关于 老公在部队户口可以签回他老家吗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信