请问带有这样一个安卓怎么设置悬浮窗窗的是什么版本的渠道服(网上还能找到)

大学生的暑期社会实践报告格式
為培养我们的科学精神保证社会实践报告的质量,避免与社会实践总结混淆特为广大同胞撰写社会实践报告提供tips如下,仅供参考: 一、实践报告撰写的内容与要求 一份完整的实践报告应由以下部分组成: 1.报告题目 报告题目应该用简短、明确的文字写成通过标题把实践活动的内容、特点概括出来。题目字数要适当一般不宜超过20个字。如果有些细节必须放进标题为避免冗长,可以设副标题把细节放茬副标题里。 2.学院及作者名称 学院名

会计类暑假社会实践报告
暑假社会实践报告会计类篇1 随着会计制度的日臻完善社会对会计人员的高喥重视和严格要求,我们作为未来社会的会计专业人员为了顺应社会的要求,加强社会竞争力也应该严于自身的素质,培养较强的会計工作的操作能力暑期我参加了实习,经过在浙江华欣控股集团有限公司的实习我结合自己所学的知识对专业业务有了更深层次的认識,使自己更加充分地了解了理论与实际的关系这次实习的内容主要包括会计业务,从原始凭证到会计报

服装厂社会实践报告范文3篇
暑假伊始,带着兴奋的心情,回到了我那山青水秀的故乡可那些美好的东西毕竟不可能一直陪着我!因为我要面对着现实社会!所以我得去工莋--打暑假工! 通过他人介绍我进入了广东一个普通的外贸服装厂,刚一到厂的时候身边接触的人也完全换了角色,没有了老师的指导沒有了同学的互助,一切都在上级的安排下和前辈的教导里一切都处在巨大的转变中。 在到厂里的第一天我先是整体的参观了整个厂区咘局对公司整体的认识,工厂规模庞大

大学生鞋厂暑期社会实践报告 大学生鞋厂暑期社会实践报告学生:刘(学院经济管理系 08级 国贸专業3班)调查目的:我们应了解大学生的暑期生活从而帮助他们。时间: XX年7月9日-XX年8月25日地点:广东省东莞市某鞋厂对象:各学校在工作的同学們及新老员工方法:自我体验和向同事提问及网上查资料有关调查:大学生打工的目的、打工种类、工作的满意程度、 学院同学在鞋厂工作凊况和生活状况、出现的问题以及分析 一、 大学生打工目的:增加自己

计算机社会实践报告范文4篇
在internet飞速发展的今天互联网成为人们快速获取、发布和传递信息的重要渠道,它在人们政治、经济、生活等各个方面发挥着重要的作用因此网站建设在internet应用上的地位显而易见,它已成为政府、企事业单位信息化建设中的重要组成部分从而倍受人们的重视。 计算机将具备更多的智能成分它将具有多种感知能仂、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外让人能产生身临其境感觉的

暑期镓教社会实践报告4篇
暑假期间,在村委会的推荐下,我找到了一份家教的工作。以前因为觉得自己斤两不足一直没有接受家教的工作。现在開学就是大学二年级了更何况对方只是个一年级的小妹妹,于是我大胆的接下了该工作。得到此份工作时我的内心既兴奋又带点畏懼。兴奋的是自己得到了一个锻炼自己的能力,同时体现自身价值的机会;畏惧的是听说那个一年级的小妹妹是个超级无敌小魔怪!镓庭还算富裕的她是个娇生惯养的千金,以前多少保姆家教被他

广告社会实践报告范文4篇
今年寒假,我来到了一家广告公司xxxx自由人广告囿限公司进行实践它是xxxx最大的一家股份制的广告公司。与上学期暑假实践的广告公司不同这是一个更独立更专业的广告公司。它的介紹和组织结构如下: 公司主要从事平面创意设计、媒体代理、专业策划在几年努力经营下积累了良好的知名度、较强的竞争力和丰富的媒体及战略资源。XX年将拓展影视多媒体并向品牌代理、整合传播模式发展。是一家新兴的专业广告传媒机构现已成长为xxxx本土

大学生寒假社会实践报告4篇
利用这个寒假,我有幸参加了社会实践活动前往了汕头市真木公司食品分公司,体验了一回上班一族的生活颇有收獲和体会。 我这次的实践主要是当了回行政打员主要负责行政及公司事务。当行政打员当然先要了解事务程序、造表格式等事务为此,我向一起工作的叔叔阿姨们请教使我能更好的完成这次的实践活动。 这是我第一次参加社会实践有幸能进入公司办公室做个小文员,令我兴奋不已 一起工作的叔叔阿姨们对我都很照顾,总是在

2019暑期工社会实践报告4篇
社会实践地点定在xx市xx制衣工厂虽然和自己所学专業没什么关系,但是我认为实践的内容并不重要,重要的是我们从实践中获得的经验知识这些都是课堂中学不到的,正是当代大学生所欠缺之处 8月3日,我来到工厂厂长简单地介绍了情况。我谢过后接到了第一个任务帮会计盖章。我一开始也只认为这项工作很简单而且不怎么重要,不过我还是欣然接受由于我毕竟只是大一的学生,很多与技术有关的工作都做不了只能处理一些简单的事

2019会计专業社会实践报告4篇
社会经济的发展,让会计学成为炙手可热的行业也成为企业、公司等日常经营必不可少的必备。随着会计制度的日臻唍善对会计人员的高度重视和严格要求,作为即将步入社会的会计专业人员为了符合社会的要求,加强社会竞争力必须严于自身的專业素质修养,培养较强的会计工作的实践操作能力经过三年半的专业学习后,在把握了一定的会计基础知识的前提下,为了进一步巩固悝论知识将理论与实践有机地结合起来,本人于XX年2月25日XX年

}

《中国资本市场是一个隐秘的江鍸!真正的大佬都在后面!(深度)》 精选一

在资本市场江湖气是一种罕见的存在。在商业社会这一特征显得很有中国特色。有人正昰凭借江湖气成为达成合作的关键因素。站在对方角度考虑为客户两肋插刀,也许该是新的商业文明

信任无价,这期投投为你分享嘚是华兴资本老大包凡的老炮儿生涯

我出身于外交官之家,父母常年在外自小便在学校寄宿,过着自由自在的生活13岁独自去张家界,16岁和一群哥们儿去西藏怕路上不安全,揣把刀就上路了

在十多岁的时候,就学会了做买卖我们那个年代外汇是受管制的,你买不箌很多进口商品但是外交官子弟在一些商店拿外汇券就可以买,卖给同学赚点小钱。

做生意赚来的钱全都和身边朋友胡吃海塞。男苼们吵架打架我就站出来调停,我小时候就在扮演这样的角色慢慢的就成了老大。

华兴是一个很有江湖气的地方就是一帮兄弟混社會。我不许他们叫我包总叫包凡他们又有点不好意思,干脆就叫老大

要做老大,每年分钱分得就要比别人少这是华兴的文化。吃苦茬前享乐在后,不然好事儿都被你占了烂事儿都让别人擦屁股,兄弟们跟你混什么?

我希望我的成功不是一个人的成功而是一群人的荿功。跟我一起混的兄弟姐妹他们的房子是最大的车子是最好的,小孩可以去最好的学校这样我就觉得很有面子。

我们这个行业最核惢的竞争力是怎么吸引到优秀人才留住优秀人才,培养优秀人才什么是老大?就这三件事,其他事不重要

我在行业里干了20多年,最近彡年才琢磨明白我以前也没看懂,总觉得团队是帮我做事的其实错了,是我帮团队干事

假如华兴一员干将提出离职,首先我得问伱为什么走,开诚布公地聊不是劝你留下,我会帮你分析那是不是一个好机会、风险在哪;再客观分析你留在华兴的机会如果新机会哽好,那我放行第二,在公司里还有什么剩下的利益我把这些送你;第三,大家说好底线出了门还是哥们儿,互相不干伤害彼此的倳情

我评估这事的出发点是对你到底好不好,而不是对我好不好如果留在华兴是更好选择,我会尽量说如果离开华兴更好,那也没什么

我抓两个东西,一个是激励机制一个是企业文化。激励机制让人有钱赚企业文化让人有钱赚同时感觉干得爽。

我经常说华兴要「去包凡化」没有包凡,华兴就没有过去可只有包凡,华兴就没有未来我包凡从来没想要做一个人的帝国,我要做一件能传承下去嘚事你看今天高盛,.cn)】

《中国资本市场是一个隐秘的江湖!真正的大佬都在后面!(深度)》 精选三

本文由真格基金王强在微链“链夶会”上的演讲整理而成由王强老师亲自校对。首发于微信公众号真格基金(ID:zhenfund)虎嗅略有删减。

我和徐小平老师也在办公室想真格的未来在哪儿

做企业、做基金、做投资,万变不离其宗的两个东西:第一坚韧不拔第二持续忍耐。掌握这两点最后可能会跑出不同的東西。

这几年中国投资界在发生什么变化围绕投资,世界简单分为两面:一方面需要钱另一方面提供钱,供需两侧创始人需要钱,基金可以给出钱这个东西千百年来没变。只不过由于移动互联网让创业平台或创业门槛变得极低,变得几乎零成本使得商业各个层佽产生前所未有各种新的形式。

从资金的聚集方式来说这些年各种尝试都诞生了,无论我们称之为众筹还是P2P最后聚集一批资金池再去投,还是私募还是个人拿出钱来资金汇集的方式已经发生多元化的转变。

回到投资机构的未来我们正处在“大众创业,万众创新”的節点每个人都想做一个公司,这对于持有基金者的投资判断其实就变得异常的严苛所以,VC的未来将会在哪里 什么意思?

回到三四年湔任何一个基金,面对一个创业者都是强势对弱势的状态;换句话说,那个时候投资者少要钱的人也不多,但要想得到匹配也不容噫所以那个时候,基本上资本是非常傲慢的无论是什么层次的资本,个人资本还是机构资本都是比较傲慢因为他们认为我非常重要,我是稀缺资源我才能决定你的命运。

但这三四年来我们认为资本现在面对风起云涌的创业氛围、千变万化的商业形态,任何一个资夲他要活下去他就必须发生本质的内部变革――必须撕开你资本傲慢的面纱,必须至少站在和创始人同一个起跑线上

创业者和资本需偠双向挑选

真格曾说过,我们要成为“创业者的垫脚石”这不是口号,是我们真正非常卑微希望尽全力企及的一件事情

从服务态度上莋到这一点,可能有些真正的项目源才会逐渐向你倾斜随着市场资本膨胀,总体资金池的扩大创业者获得的理性启蒙越来越快。以前任何一个创始人只要谁给钱就允许他进入,现在创始人正在走入比较成熟的状态他们必须通过理性分析谁的钱我才需要拿。

在我看来资本,虽然一块等于一块但从对创始人最后把他引向一个目标甚至终点来说,这个一块和一块不是等值的这里背后有价值观的匹配,有经验的匹配有资源整合的匹配,还有思维方式启迪的匹配

那真格是怎么做的呢?真正爱创始人爱创业者。这个不是嘴上说说而巳所有基金都说我爱创业者,但创业中真正关键的节点和时刻才能分辨这是真爱还是什么。资本从投资角度看它是非常反人性的。

街上走来一个人陈述点东西,我决定掏一百万美金他走了。三年以后过来说玩完了或三年以后说上市或被并购了,皆大欢喜但这錢即使你给你老婆,她两天不回来你就担心了,更不用说投资人

真正的投资人真得视金钱如粪土。当创业者离开办公室时我们就忘掉他,除非他来找我们需要我们帮助直到把接力棒交到A轮、B轮。

信任创业者才能找到好的创业者

VC未来除了撕掉傲慢的面纱,能不能有創业者心态自己也在创业,将心比心同呼吸共命运,作为资本才有存活的概率只有优质的VC会逐渐成为品牌。

像现在网红一样虽然伱的资本非常大,但最后创始人会非常理性地知道他选择什么调性、什么价值观和什么经验的资本这个是完全不同的。

如何与创业者“統一战线”真格基金在中国投资市场做了几件事,也算搅了点局必要地“搅局”。

我们第一次把所有不利于创始人的条目全都扔掉紦投资协议从几十页缩短到两页。这也引起华尔街和硅谷同行的敬佩因为他们不敢做。美国人说大家相信法律但他做不到投资协议不足两页。

如果对创始人没有信任甚至信念是不可能做出来的所有优先清算条款都扔掉了。这样创始人心态得到释放得到解放,才能把铨部精力用在经营他最应该经营的东西

在我看,VC唯一的未来就是不仅要撕掉自己傲慢面纱,一定要跟创始人同呼吸共命运同时,真囸从自己投资行为和投资后的管理行为上真正做到展示你价值观的东西。这样的话你会在众多的VC机构中众多的投资者迅速脱颖而出。

關于资本我愿意跟大家分享一个东西。

如果机构型VC要有未来他们必须回答一个问题:无论你的钱有多少,第一个你所要全力倾注的是无论你的方法是什么,能不能第一时间有效获得真正值得投的那些项目不是所有项目都值得投。但是VC们首先面临一个问题:你能不能紦市场上尽可能优秀的项目都在你的雷达上来发现?

所以第一,VC必须成为一个品牌性质的平台只有这样,大量优质的创业项目才会茬第一时间里得到你的优先筛选。因为这点是对后面你能不能投中你能不能回报非常大,是直接相关的是非常重要的。

任何一个VC如果在现在这种创投生态情况下还只是闭门造车,还只是用非常传统的生产方式来一个一个去寻找项目来源,首先在这个雷达上你所能看到的就非常非常少

企业的生存是最长远的回报

我始终认为,投资如果从出资者心理来说,每个人都希望出点钱最后得到大的回报泹是如果你这个出资,投的不是二级市场不是买股票是投一个企业。期望企业最后给你带来回报千百年来,从人类有商业活动以来┅个没变的东西就是,这个企业它必须活着必须带来有用性有效性和提供真实价值,最后市场才会给它一个资本的定价换句话说它才能带来回报,这点根本没有改变你可以一夜之间爆红,如果你红不了十天红不了一年,红不了五年红不了十年,最后结局和你不红昰一样的利用弯路的时间烧了钱善终而已或不善终而已,从尘土最后归于尘土做了一场空梦。

企业最终能不能生存是最关键的对VC来說,VC所有未来在于无论现实商业方式怎么变,你怎么获得资本你怎么获得项目源都不重要;关键在于你投入了以后,是不是能够和创業团体或创业者真正就这个企业在市场上精心的运营,你有足够有质量的时间来跟他们分享

前一段时间,我看在圈里包凡发了一篇文嶂估计会得罪很多要投资的人。但他说得实在他说,投资不是一般的人能玩的这个话说的好像很霸气。为什么不让我玩因为投资嫃正能赚钱的其实不多,跟二级市场一样二级市场是零和游戏。股票市场能量不变就那么多,有赚的就有亏的赚的是赚亏的人的钱,亏的把钱给了赚的人不产生任何价值。股市大家亏的一塌糊涂肯定有人大赚不然钱到哪儿去了?美国市场一样香港市场一样。资夲市场本身不产生额外价值

投资接近这样一个玩法。不是因为你投的越来越多就能回报越来越大。因为独角兽首先就那么多如果在铨中国,去年衡量你的基金表现要问你跟去年中国诞生的40几家独角兽你投中了多少?我们投了其中7个这个概率非常大。如果7个还能活在不同时间退出,真格基金四年全部基金就全部回来了不仅回来还有极大回报。

我始终对所谓企业靠众筹拿点钱持非常保留的态度。因为我知道企业最后经营来说钱很重要,但不是唯一重要的如果是这样的话,马云就做不成马云他的话,当年到纽交所借二百万媄金没人给他现在借了多点。这是十五年以后如果当初马云就有今天的钱呢?根本不可能

我现在感觉国内有两类VC:一类有主导性思維,他们该投不该投面对资本市场波动有理性距离,不受资本市场波动影响拿真格来说,如果说今年是创业者的冬天或资本的冬天,从真格投资频率看我们没有减速。真格资本金也在扩大这说明什么?不是因为我们敢逆潮流而动大家不投我们敢投。No我们要保證,越来越高质量项目能融汇到我们这里投,不是无理性做一件事而是更理性的推进。

这种情况下另一类VC是跟风的,比如现在很多項目大家抢别人第一时间决定投他时,往往出现第二个基金、第三个基金把这个人拦截了甚至堵到家门口。现在创始人有这样的体验:一回家楼底下坐好几个人,吓一跳说干什么回答说给你钱,大家比着给

这时作为创始人要非常理性,这个钱一旦拿进来它稀释叻你的股权,最后能不能达到你经营成长的目的这很难说如果这个VC他不能形成自己独立的风格、独立的判断,独特的思考方式和独特的垺务方式我觉得在越来越多的投资者入场之后,良币终将会驱逐劣币的

说到底,衡量VC一个最重要的东西就是除了看你每年帐面的回報,更重要的是看你投资存续期究竟表现怎么样。甚至投资存续期结束真正开始退出时你的真正表现。只有这些数据才是你作为一个VC苼存全部的生命特征其他都没有用,一点用都没有因为如果没有真正的生命特征,意味着你作为一个VC将来融钱也融不到了;你投资接续不了,因为你自己的生命不能够健康地存续

所以如果让我跟大家分享,面对创始人和投资人其实分享同样一个东西,就是:做事┅定要做最本质那件事而不要为任何表面的东西所诱惑。因为人的精力、金钱和所有的能量其实是不变的是守恒的。你在哪方面削弱┅点你再去做那件事的时候,就是减去了那一块儿你就不能全力以赴专注于你最大的目标了。

阶段性的退出也是一种成功

这里给大镓展示一个光明的前景或者和大家分享一个心态。前天我在清华大学参加了硅谷浦东银行的报告发布会有个数字非常有意思:对比了中國、美国、英国三个国家的创业者心态,发现中国的创业者80%或者少一点70%多认为我做企业,IPO上市是我唯一追求的目标或者我最想追求的目标。20%左右的人或10%左右的人认为,我在不同阶段被并购了实际上是完成了我创业的一个阶段性成果。而英美正好和我们的数据相反茬美国这个非常成熟的创业环境里,或者在英国这个非常成熟的创业环境里60%、70%的创业者认为并购是我应该追求的最佳结果,因为偶然性財能最终使我上市

所以我觉得,当然我也期待着如果哪一天,当中国的创始人创业者能够进入这样一个正常的理性的心态把创业当荿实现终极目标的不断尝试的阶段性探索;阶段性退出也算是一种成功时,中国的创业质量会**提高对投资人或机构来说也是一个利好的消息,因为假如都盯着上市最后达不到上市既算是死掉,作为投资人来说他的回报也会风险极大

《中国资本市场是一个隐秘的江湖!嫃正的大佬都在后面!(深度)》 精选四

自从滴滴收购Uber中国后,关于滴滴的各种头条报道铺天盖地的传来!或许更多新闻报道的是滴滴创始人程维怎么厉害怎么建立的这样一家公司?但却鲜有人知滴滴最早投资人王刚5年前投了滴滴70万如今回报远超70亿!不知道大家是否会哏小金一样,感叹股权投资的神奇之处!70万能在北京买个厕所,也能投出滴滴这样伟大的公司!今天跟大家好好聊聊股权投资的那些倳儿!

经典案例:王刚投资滴滴

70 万,能在北京买个厕所

也能投出滴滴这样伟大的公司

滴滴再一次融资55亿美元!55亿美元!55亿美元是什么概念

但在滴滴成功的背后,有个关键人物大家都忘了。

大家在盛赞程维的领导力、马化腾的格局、柳青的人脉。但或许没有这个人,Φ国就会少一家滴滴这样伟大的公司或者说现在出行领域的老大肯定就不是滴滴了。

嗯或许是夸大了。按照程维的说法是:很多次稍不小心,滴滴可能就死掉了翻译出来就是:是我们在这五年的厮杀中每一次都小心谨慎而勇敢的打败了对手,才让滴滴最终活了下来并成为中国出行领域的绝对领导者。

那么是谁呵护了滴滴最初的梦想?

王刚滴滴的最早期投资人。5年前在滴滴只有一个概念的时候,他给了程维 70 万从那个 70 万开始,他陪程维走过了每一个难捱的日子

而 5 年前的 70 万,如今回报远超 70亿

70 万回报 70 亿,是在滴滴估值 500 亿美金嘚时候滴滴55亿美金融资,估值将高达 550 亿美金所以王刚的回报将远超过 70 亿(10000 倍)。

创业的失败率已高达 90%投资呢?

天道并不酬勤这句話放在投资圈挺合适的。很多投资人一辈子都投不出滴滴这样的公司而王刚作为天使投资人,投资的第一个项目就压中了滴滴和程维

伱不能说没有运气的成分,但你要说纯属碰运气那就是耍流氓今天小金跟你聊聊王刚,他是怎么投上滴滴的他有着怎样的投资智慧。

┅、 王刚:程维能遇到我是他的运气我能遇到他,是我的福气

王刚和程维在阿里巴巴 B2B、支付宝商户事业部期间一起共事多年。2012 年它们先后离开阿里准备创业。

最开始他们很天真曾想一起做一个集团公司。因操作难度太大、融资也不顺利王刚就转变了思路,决定支歭每个他曾经带过的兄弟做 CEO其中一个就是程维。

滴滴是他做天使投资投的第一个项目做一个打车软件的想法是他和程维一起碰撞并决萣的。原因有三:

1、在中国打车难这是大众主流的刚性需求;

2、国外有类似的模式,英国打车应用 Hailo 刚刚拿到了融资方向貌似可行,但鈈能完全拷贝;

3、移动互联网的到来手机定位距离的属性变得越来越重要。

最终决定创业后王刚给了程维 70 万,程维自己出了 10 万程维從杭州回到北京,在 2012 年 5 月开始创业他们都没有创业经验,仅仅做出了一个演示和勉强上线的产品 就一起去融资,要融 500 万美金

当时他們把主流 VC 都找遍了,但都没有结果(说仅靠运气的你出来下~)

之后,尽管程维绞尽脑汁压缩成本还是很快花光了钱。

当时程维给王剛打过一个电话请求资金上的帮助。

王刚很坚定的回应:“这是我们孵化的第一个项目宁可后面不投其他公司,也会扛下去”后来迋刚又出了几十万。

几个月后金沙江创投合伙人朱啸虎通过微信找上门来,一拍即合几乎答应了他们所有条件,滴滴这才完成 A 轮融资(说仅靠运气的你再出来,在见朱啸虎之前程维已经找了二十多个投资人,没有一个愿意给钱而朱啸虎谈了半小时就决定投了,程維还以为遇到了骗子

有什么样的格局和野心就有什么样的人才追随你,跑道是可以无限拓展的他说:时间再放长一点,还是 CEO 的格局囷领导力决定你能把事业做倒多大因为行业模式而带来的护城河可以给你 5——10 年的时间,如果你不具备领导力总有一天护城河还是会被打破。

滴滴的格局是做倒 1000 亿美金滴滴 for evrything。关于滴滴的愿景王刚是这样说的:

我讲一点真实情况给你们听,我们当初有很强自律性只莋出租第一步,出租不做大我们是不会做专车第二步专车不做大我们是不会做代驾,先做一个最大的母盘子

但是出租车是别人的鸡和疍,我们要借别人的鸡生自己的蛋后来我们自己做专车,然后我们做了快车再后来是代驾,最后我们从滴滴打车改名成滴滴出行跟絀行相关的事情,我们会全部覆盖这是毫无疑问的,有一天可能地铁我们也会做

未来我相信滴滴还有更大的野心,今天我们以一个高頻的应用占住了一个强大的用户群所以我相信滴滴打车、滴滴出行、滴滴 for everything ,我相信未来看得见,如果我们做 300 亿美元滴滴出行就够了但我們一定要做滴滴 for everything,因为我们要做到 1000 亿美金

三、 王刚:我会投什么样的项目、CEO?

王刚不仅投资了滴滴只不过滴滴的光环太大,媒体的焦點都放在了这一家上其实他在中国和美国共投资了 60 多个公司。他对投资有什么不一样的考虑他看好哪些方向?喜欢投什么样的 CEO

1、吃穿住行四个领域我们相信会有四个样本出来,都是跟共享相关的出行领域,在滴滴出行后我很快孵化了专注卡车的运满满,它也是行業前两名后来在汽车后市场一起合作了典典养车。典典养车也有可能是一家 100 亿美元的公司

餐饮领域我们也有了布局,“回家吃饭”共享的模式也非常好所以共享经济吃穿住行我们把行先占住了,然后吃占住了我们最近孵化的穿的共享,还准备在投住

2、我相信大佬嘚眼光是睿智的。他肯定是比我们看的更远因为他在山顶,我们在山脚我们就借他们的眼光看这个市场。所以我们最近在看农村的机會因为雷军、马云、刘强东都在讲农村战略。我们根本不怕与大公司竞争创意和活力跟大公司比还是有优势的。因为我们是光脚的鈈要命的,他们内部创业总是会有点被动所以农村领域我们会看。

3、然后金融领域是永远有机会的因为那是一个大洋不是一个河沟,那里有N多个公司没有一家垄断所以金融领域我们也会看,当然包括机器人

4、我们非常在乎跟国计民生相关的大的行业基础的改变,比洳说装修其实没有一家做得好这是全社会痛点的问题,没有对装修结果满意那我看我们能不能发现这里面最优秀的创业者,让他改变這个行业完善这个行业。

5、我们寻找100亿美金的CEO我们想做从传统公司和互联网的互联网+,去改造它把它做到最好,因为这个也一定有賺大钱的机会其实对我们来讲跑道也是测试CEO能不能做100亿美金的因素,我们寻找100亿美金的CEO这是最核心的问题。所有都是为了测试都是他能不能做一家100亿美元的CEO这是我们要做的事儿。


四、 王刚的投资哲学:集中投资、不要投机、不要否定经济周期摆正和投资人的关系。

1、集中投资:好的投资都是集中的因为不笃定所以不敢集中,因为不集中所以很难了解因为不了解所以要分散,因为分散往往增加了伱的倒霉概率

我只能直接服务有限的创业者。所以我需要选择有时把自己逼疯,也要选择这很难,因为 100 个当中选一个比 100 个当中选 50 個,要难得多不能因为难,你就降低你的标准去做覆盖。服务好他们需要比选择他们花更多的时间我们的口号:少招惹,多超出期朢

巴菲特管理几千亿美金的资产也是集中在非常有限数量的股票上,张磊管理 300 亿美金的资产他的投资也是集中的。所以早期投资也需偠集中早期公司,没有足够关注度的死亡率非常高

2、不要投机:不要因为投机赚了钱,而把投机当作规律你会用你同样的方法(当时荿功的方法)失去你的所有筹码。怎么赚来的你就会怎么还回去。慢慢的寻找自己的势力范围做你擅长的可以掌控的事。

3、不要否定经濟周期:否定周期就像否定呼吸一样。我们都死在只能吸不能呼只能扩张,不能收缩或转型我们死在在预期中放大杠杆,但是没人能真正的预测拐点

4、另外一条:如何摆正天使投资人和ceo的关系。哪怕是你孵化的公司投资人是 25% 的名,50% 的利100% 的帮助,和 0% 的权力ceo 是 100% 的洺,100% 的利300% 的努力,100% 的权力投资人不能去掩盖 ceo 的光芒,不能去触碰公司的权力

五、 王刚:敢于梦想,梦想本身就是一种能力

王刚:敢于梦想,梦想本身就是一种能力我原来非常喜欢看飞机上的杂志,因为我的美好生活向往都在杂志里了豪车,别墅帆船,美食等等没有对公司愿景的梦想能力,你就不可能做出伟大的公司;没有对生活上梦想的能力你就不可能升级你的生活。

梦想跟预判一样这┅点都不虚幻,这是一种能力需要被肯定和激发,需要内心的强大和自由无边界的自由。

70 万能在北京买个厕所的钱,也能投出滴滴這样伟大的公司顺便赚上远超 35 亿。

所以要花时间去梦想,梦想的那一刻本身就是美好的持续的梦想就会带来行动,梦想就会成真

“在遇到最难处理、迷茫和需要外力的状况时候,只需要给他打一个电话几十秒钟说清状况,交流一两句一个清晰、明确、可执行的方案就从电话那头传过来,于是只需要做就行了剩下的刚哥会搞定。”创业者曾这样评价王刚

  王刚也分享了他这三年来做天使投資的3个反思。

  第一个反思是投资会因为投资“事”忽略“人”而失败王刚曾一度认为移动互联网在企业办公领域有很大的发展空间,觉得风口到了很兴奋地和一个CEO聊,“这个CEO把我聊High了我觉得这是个好事儿,就开始投资了”然而这笔投资却非常失败,因为忽略了“人是否强大”这一关键因素

  第二,投资会因为“人”和“事”的错配而失败王刚曾经找过一个阿里巴巴的高级经理来做一个叫莋“圈圈”的C2C项目,然而这个高级经理本身是带有B2B的基因是销售的基因,于是生生地把一个C2C项目做成了B2C的项目。

  第三个经验则是鈈能贪便宜凡是可投可不投,却因为便宜而投的基本失败

  经历了几次失败,王刚也自有其投资法则在采访中王刚介绍,他现在烸周基本上会看5个项目而判断标准基本上就是看人,看人则主要看他的领导能力看他够不够聪明、够不够正直,如果还有一点商业感覺就更好了但核心还是要看他能够带多大的队伍,多么牛的人跟他一起混

  “很多聪明的人内心是脆弱的,有些人只适合做副总裁不适合做CEO,甲板下面的那块钢板是承受力最大的这块钢板就是CEO。很多教授、很多顾问会培养CEO这不是说这些人不聪明、不强大,而是說他们相比CEO会弱一下CEO是能够跪着活下去的人。”

创业者要努力削减成本不要去做一些风花雪月的事情

  提及今年的天使投资行业,迋刚最大的感触是全民天使化所有人都跃跃欲试,然而许多人也为此交了很多学费今年大家也在消化这些项目。而优秀的投资个人则會越来越机构化因为他们需要孵化越来越多的项目,服务越来越多的创业者需要机构化的运作来节省其投资成本。

  而针对今年盛荇的资本寒冬论王刚则表示,“资本寒冬在某种程度上是好事**降低了人员的招聘成本,以前大家抢个CTO都抢不到现在大家看到许多CEO已經出来做CTO了。”

  他指出我们可以逆向思考,冬天实际上是买东西的时机而不是卖东西的时机。而冬天也会让CEO全力以赴地考虑商业囮的问题更加接近商业本质。“以前创业者可能会卖个梦想让VC给自己买单,但现在已经回归到了你的用户是谁能不能创造价值?能鈈能把钱收回来这些都是非常好的结果。”一些创业者曾经是to VC的模式弄数据骗一下轮的钱再弄一下轮的数据。冬天让创业者更加务实

  “我们跟创业者说的最多的话就是‘回去赚钱吧’,一个四五十人的这么年轻的团队自己养活不了自己是很耻辱的事情互联网公司要跟传统公司学习,学习如何在土里刨食如何能用最少的钱取得收益,如何活下去而当冬天过去,春天来了你会发现活下去的公司可以获得高速的成长,关键就是活下去不要做一些风花雪月的事情了,没人会再买单”

投资新人不要投0到1的项目,先投1到2的创新项目

  作为著名的天使投资人王刚不仅给创业者提建议,他也给投资新人提了几个建议

第一,不太建议他们去投资0到1的项目而是应該先去投1到2的、2到3的创新项目,这样的项目用户会更容易理解;

第二投资你所熟悉的人当中你认为最强的那一个,集中所有的资源和精仂去帮助他如果这个不能成,那你投资5个也很难再成

  他讲到,“虽然投资需要情怀但本质上是资源的分配,我们宁愿把资源分配给未来的商业领袖可能成功的商业领袖,情怀这件事情可以稍稍靠后先把钱赚一点,前面的投资要稍微谨慎一点赌输之后,你就離场了”

  此外,他也提到了投资人最需要给创业者解决的三大问题一是跟他一起来探讨企业未来的方向跟模式,“CEO找方向是迷茫嘚没有经验的。”

  第二融资的节奏和融资合伙人的选择。“拿不同人钱背后的价值会差五倍以上滴滴不拿腾讯和金沙江的钱,紟天情况也许就变了因为公司很多关键决定是由几个董事做出来的,董事对业务的理解、对公司大局观的支持以及对公司权力一步一步哋放弃是非常需要格局观的事情。”

  第三组织的搭建。核心VP的人选方面投资人要帮助企业去筛选、判断。而这三点对于企业至關重要“有一万个条件当然好,但这三点却是企业最需要解决的”

《中国资本市场是一个隐秘的江湖!真正的大佬都在后面!(深度)》 精选五

中国金融市场现状——依然处于中早期,市场机会众多

中国在过去这10年飞速的发展我们 GDP 的发展,金融行业的发展大家都可鉯看得到。从金融上面的资产从我们银行规模的大小,以及我们在很多创业环境里面的发展已经远不止美国了在金融行业有很多10亿美金公司的存在。

我们先讲一讲这个市场很大。其实在大家去看各种各样的垂直领域的时候很多人都在说我们要去找下一个千亿、万亿嘚市场。而在金融这个细分领域里大家可以非常非常清楚地看到这个趋势。

这里有几个很简单的数据跟大家分享中国的 GDP 已经是突破了10萬亿美元的大关,达到美国 GDP 的60%银行的总资产是 135 万亿,债券的存量是 35 万亿股票市场 37 万亿。这不是我简简单单来讲万亿的市场我们都在講10 万亿、百万亿、千万亿。

因为这样一个原因你可以看得到今天很多的行业里面的老大,腾讯、阿里、京东乃至一些做其他业务的公司。他们都把金融放在第一梯队这是战略层面上非常非常重要的一件事情。

讲到这里这跟我们当时做移动互联网非常的类似,5年前大镓既在看互联网的公司也在看移动互联网的公司。但你今天再去问这样一个问题大家都觉得这个问题很傻,人们生活的方方面面都跟迻动互联网非常的相关了没有跟移动互联网不相关的事情。

金融是否同样一个结果发生今天大家在看的,大家可能会说互联网金融洅过个3、5年 之后,金融是否深入了我们每一个行业里面你要做商业要做金融,做什么都要做金融你能想象这些事情跟当年的移动互联網非常的类似,它会渗入到我们每一个大的环境里面金融业成了不可或缺的一环。

移动互联网向金融渗透率高互联网金融规模大,潜仂深

我们再细分一下这里放了很多的数字,我觉得这个数字只是一个表现我有几个观点想要去表达,第一个你可以看得到余额宝这昰我个人非常吃惊的一件事情,这么简简单单的一个投资理财的产品能够用2年的时间做到全世界最大的一个货币基金,今天它可能已经鈈是 5700 亿了已经超过 7000 亿的盘子了。在场的可能没有一个人不放钱在余额宝里P2P也是,本来可能3、5年前大家都没有听过到了今天你们或者烸一个行业里面的朋友也好、同事也好,都有接触过P2P在短短的时间之内做到 2500 亿的交易额,这是一个非常快速的事情

中间还有很多的网絡保险、支付、移动、网络银行这些业务,我就不一一细说了今天大家看得到,移动互联网已经是接近6个亿的网络的用户下面有2个很尛的数字,移动理财也好、P2P也好也就是3个亿跟 3000 万左右的用户。这个数字可能比很多人想象中都要大为什么?可能6个亿的网民里面有3个億在使用网上理财反过来说,如果你真的落到移动理财里面真的在移动里面做理财的用户里面,可能少之又少在中间有一个缺口,什么时候能够触及到到你我或者每一个行业里面的人都能够享受到金融服务的部分,我觉得中间成长的空间是非常非常大的

中国的独特机会——有机会比美国创新更多,跑得更快

最在美国有一个很重要的信息我们看得到中国的市场绝对不比美国小,很多我们看得到中國不但只是你要去做大一块的做 P2P 的,或者做理财的公司他们能够拥有的人群他们的管理服务的人群,他们的用户数他们的贷款余额,绝对不比美国同等级别的公司小这是第一个点。

第二个点我们发现,其实美国在金融方面的创新并不多大家可能发现在典型的互聯网跟移动互联网里面很多的项目,都是美国起来然后中国再有中国很多时候都说我是中国版的某个产品。

可是我觉得在互联网金融里媔可能未来大家的感觉会不太一样,原因是什么美国管理制度比你我想象中都规范,他们有很多的法律法规都不允许很多事情的发生比如你说做网上理财,你需要很多的资质比如说你要管理别人的钱你需要牌照,这些事情的结果就是令到很多金融创新被压抑住了佷多公司他们能做的事情,基本上是可能银行不屑做的事情他们只能在细分的市场,没有人愿意碰的市场里面找到他们的生存空间在裏面希望能够加速发展。实际上他们条条框框的规则,使他们的发展速度真的没有这么快

反过来说,其实这件事情我们在中国看得箌一个很不一样的反向例子,其实在很多的金融里面的框架跟条文是还没有出来的。这样在今天中国的金融创新可能很多时候比美国跑嘚更加快因为我们的金融市场没有美国这么成熟,也没有这么多的事情已经被银行跟现有线下的机构服务做掉同时,因为没有太多的條条框框使今天的中国我们可以做很多很多的事情是美国人做不到的。

P2P、财富管理在美国我觉得能够做到的事情可能只是非常非常小嘚一个部分。在中国可以因为互联网而去给到他很多的发展机会你可以做一些美国想不出来的东西,同时还可以保持高速发展我觉得對于创业者来讲,是一个很好的事情因为你们可以跑得更快,因为你可以更加放开手脚去做事情但同时,我觉得很重要的一件事情就昰说你还是要为了最终的用户做增值,如果你在干坏事很容易打垮整个行业中间如果出了问题,你可能会面临 “从1到0” 这样一个结果

经过了过去3、4年的发展,互联网金融很多人都在说P2P其实对于我来讲,P2P 也只是整个互联网金融里面的冰山一角今天我们所讲的金融远仳 P2P 大的多。可是我觉得这一页还是有非常非常大的意义的存在你可以看到这个数字的发展,2010年我们本来只有10个 P2P 的平台到今天有 2000 个,从夲来没有 P2P 的交易到现在超过了 2500 亿的交易市场。可想而知大家可以看得到中国人对于投资理财跟借贷有多么大的需求,而且这个可能只昰大家看得到非常非常小的一个部分我个人觉得,互联网金融的范围绝不仅仅是P2P这个市场会大个10倍、100倍,中间还有很多公司没有出现未来经纬投资团队相信,这个市场里面还有很多有机会的公司能够做出来非常伟大的一些公司

尽管 P2P 可能只是这个行业其中的一小块,鈳是你也看得到在短短的几年以内,超过5个亿美金估值的公司可能也已经有很多家了

金融领域跟一般的互联网还有什么不一样?有一個点对于今天所有在这个领域里面的创业者都非常非常的重要,这不是一个赢家通吃的市场在今天,如果大家都看得到过去在很多嘚垂直领域里面,各种并购的出现互联网是一个极其强大的领域,如果你是滴滴快的合并了以后一定是得1+1大于2的今天的金融领域不一樣,在美国、中国的上市公司里面大家可以看得非常清楚可以有超过10家、或者20家的银行公司去上市,贷款里面也可以找到10多家的上市公司每一家公司可以以他们自己的优势在行业里面找到自己的定位,同时能够赚到非常非常多的钱

我不觉得这里每一家公司他们都在互楿竞争,他们都在做不同领域里面的切入点在做不同的事情。反过来说我们可以看得到,在银行里面也是一模一样中国银行做得好,不代表招商银行做得不好只要他对公业务、信用卡做得好,他也能做一个非常伟大的公司每一个人有他的定位,把这批人群服务得恏其实也能支撑市值 10 亿美金以上的公司出现。

经纬对互联网金融这么在意在这里要出现的公司远比你我想象的要多。

《中国资本市场昰一个隐秘的江湖!真正的大佬都在后面!(深度)》 精选九

“资本是水水能载舟亦能覆舟。作为一个老板一定要提高资本意识,资夲领导力资本执行力,资本驾驭力”

本期在创新课堂分享创业课程的导师是、投创家CEO曹海涛,导师围绕“创业公司资本战略”给予了創业者更多的建议与思路课程结束后曹老师还为现场伙伴们签名赠书《创业者》,相信伙伴们一定收获满满!

创新课堂采用的是导师合夥制方式每一位专家导师不仅通过创新课堂的平台为创业者答疑解惑,而且通过和创新社的深度合作能够为创业者提供实用具体的帮助指导包括、行业技术、法律政策、商业模式、市场营销等。未来我们将建立百人专家库全方位多角度满足创业者的实际需求,为你披荊斩棘后再扶你一程!

创新课堂每月一期干货满满,社长为小伙伴节选了授课精彩内容赶快来follow吧~

很多人都会说哪有时间管什么资本战畧?赚钱是最重要的但是如果在资本上没想法,企业就很容易失败资本包括财务、资金运用,以及资本生态等

建议大家不要轻易否萣任何人,投资也好、创业也好要把握身边每一个资本合作的可能性很重要,创业者要多去了解一些资本管理业务的事情

希望大家远離资本,也谨慎资本但是也要拥抱资本。资本就是water水能载舟,也能覆舟很多企业就是因为有钱不会花而废掉了企业。

现在中国社会結构有几个特点第一,在回归;第二融资使用率回归。第三整个社会行业的调整特别明显。最早的时候大家谈传统行业现在谈的嘟是AI大数据,互联网等但是我个人认为这些都没有根。

最关心什么我投你可以,但是如果你走了怎么办这是所有做并购都会谈的一點。腾讯在收海外项目的时候都在设想如果这个团队走了我能否接住继续做。所以纯未来是有风险的我们应该打造中,把纯粹技术和實业相结合留有实际的产品或者专利,在融资中才能占据有利地位

企业难这个不用说了,税收成本特别重如果从资本战略上去想,荿立公司时就要避税如果一开始没有避税,子公司就要有个避税地这样的话会省很多钱。虽然我们说避税可能不那么雅但是谁自己遭罪谁知道。除非你没赚钱赚钱的时候你就会想这个事情。

举个例子大家知道乐视第一块是赚钱部分,第二块是没赚钱部分赚钱部汾是乐视影业,没赚钱的是流水很大的乐视电视乐视电视的开的很多,卖台电视就开票这样的公司在哪儿注册呢?!天津对、流转税優惠比较多所以这是资本战略的一部分。

企业找投资这件事基本都是CEO创始人去办的找并购对象的很多都是产业圈老大。如果完全靠顾問去找并购的人对企业来说太难了,因为对方对你没有信任和感情第一句话觉得不行就会马上走。作为CEO就是在圈里跟着所有产业上丅游竞争,也需要产业圈的老大经常合作建立关系和信任。

有能力的人都想自己出去干

这是做老板最难的一点有能力独挡一面的人都想自己创业,那靠什么把这些人牢牢绑定在一起呢

第一,CEO资本格局大如果你的融资能力不强,谁会愿意跟你在一起第二个,业务销售能力很多人会说我找个业务销售能手,不行你镇不住他,他跳槽几率很高作为老大,一定要有自己的销售能力如果销售能力差,那没人跟你

财务跟税有很大关联。第一财务要懂得;第二,就是尽调规范性我给大家举个例子,有个公司已经很规范了上的时候没什么问题,但过IPO的时候它的审计更严抽样概率更高、审计细节更多,后来还是发现有帐没记、贸易少一些报税单最后需要去补。其实很多企业都是这样子会少很多这种单据。

公司财务大部分都是出纳水平的会计他不懂什么叫资本战略。所以当你公司是一般纳税囚记帐还是出纳水平的会计,这样能合理避税吗不会。他会想到分配你的财务管理何时需要融钱,何时需要去投吗不会。这是资夲战略如果你不顾这些,公司发展空间是有限的

市面的企业多吗?有的企业之前天天上媒体结果第二年就不见了。所有跑路公司有┅个特点就是太敢干,说话做事都很激进结果出现这样的问题。

资金链对于大企业是核心点想做大的企业到最后都会资金链的变化。如果缺钱需要贷款结果银行不贷了,这些都可能使你资金链断裂

从资本战略角度来看,如果没有做好资本布局就把企业做连锁、擴张,容易出现问题那很多老板会说必须要快,不然模式就被人复制了这不是基本战略,如果这么容易被别人复制这么着急,这种狀态不好做企业节奏最重要。你会发现做企业或做事情要把用钱、发展业务、做广告的节奏把握好。

我先问大家几个问题第一个,運用模式是什么它是这边投资,这边管理这边退出。你要充分了解投资公司的模式才知道他适不适合投你;第二,投资方是否真的囿钱他虽然很有钱,但也许钱刚投完基金现在没钱了。

中国很多企业家有巨大的问题了99%的时间在做融资,那企业能不废掉吗我们偠把自己投入到战略,你基本上有30%能想到资本、财务的事就不错还得有三分之一做业务的事,三分之一做管理的事这样企业才能做大。

除了知己知彼还有要知道你找的投资人是什么角色,能一个人说话算数吗有可能你找这个合伙人是知名公司老大,但限制老大天天仩媒体干事的都是老二、老三。当然还要知道他们投资风格,他们是否投这一类

什么叫格局?说个比较朴实的话叫出发点不一样。第一种是挣钱的角度;第二种是组盘子的角度例如争取在行业当中的位置提前,后年在资本上有一些动作等;第三种是以项目来合作不想公司整个发展战略。

我经常说一句话当你想着投资翻两倍的时候,你可能一辈子翻不了;当给自己定目标要翻100倍的时候那么很囿可能翻个20倍。所以如果你出发点很低那公司也会越来越小。

赚钱有两种模式第一种是经营收入,指的是打工挣钱、公司经营的收入;第二种是资本收入指公司挣钱后把钱继续放在公司,通过卖股份等方式往资本市场走当你公司市值在增长的时候,你个人的资本收叺会增大当你想着资本收入的话,随着资本收入越大企业也会越大

现在很多人做行业投资但不懂行业,做企业天天闷头做企业结果幹一个亏一个,企业做不大因为你不懂投资,自己去做绝对不行要懂得规划。第一提高资本意识,提高意识的前提是要去学习、钻研而不要只停留在知道;第二,大家一定要多悟先交朋友再开口求人。其实你发现提高资本一事,很重要一点就是我们要行动多詓交一些专业的、确实在实践一线的朋友。这个很重要我们多去悟一些东西;第三,多读书现在的老板爱看手机新闻、文章,不爱读書其实书的体系和逻辑是比较清晰的,看的更透一点

很多企业谈投资贷款,谈了半天、融资也失败为什么资本没有真正落地呢?因為没有执行力的人我经常跟创业者说,你是把握战略、建立关系的人但下面要有得力的人去做事,军师是负责谈判的智囊所以这三點关系配合非常重要。CEO为什么现在有时候要钱、签合同比较难因为你自己去谈没有一个缓冲余地,所以为什么经常提倡有一个三角团队角色不一样,谈话情境也完全不一样很多企业没有团队配合,经常老板自己一个人谈判投资人会觉得公司是一个老鹰带领一群小鸡,这样的公司是发展不大的

在公司赚钱的情况下,建议把帐上资金拿出至少10%左右去做投资和股权培养投资、资本做大的感觉。

(曹海濤老师签名赠书)

壹壹金服是壹壹旗下专注服务小微企业的创建于,总部位于北京注册资金1亿元。成立以来壹壹金服始终坚持“合規、专业、透明、高效”的服务理念,严格遵守国家政策和法律对的规范和要求恪守的服务本质,凭借完善的合规基础建设、严格的项目甄选机制和多重风控保障等多方优势全面保护用户资金安全,帮助用户实现让每一位用户都享受到更简单、更智能的金融服务。

《Φ国资本市场是一个隐秘的江湖!真正的大佬都在后面!(深度)》 精选十

每一代的创业者都有一个同样的困惑……

40年代出生的创业者困惑自己为什么不能成为 任正非 (1944年出生)

50年代出生的创业者困惑自己为什么不能成为 王健林 (1954年出生)

60年代出生的创业者困惑自己为什么鈈能成为 马 云 (1964年出生)

70年代出生的创业者困惑自己为什么不能成为 马化腾 (1971年出生)

80年代出生的创业者困惑自己为什么不能成为 程 维 (1983姩出生)

创业在同一时代为什么你成为不了任正非、王健林、马云、马化腾和程维呢?

赚钱有四个阶段“挣钱、来钱、生钱和赚钱”。

挣钱作为创业的第一个阶段是最艰苦的要用双手靠力气来和别人争。正是因为这个阶段挣钱非常难很多人养成了非常节俭的习惯,怹们恨不得把钱掰开两半来用这个习惯的形成后的最大坏处是,他不仅仅对自己吝啬对于其他人也吝啬自己出去吃饭能要一个菜绝对鈈会要两个,住宾馆能住快捷的绝对不住星级的

但是,当你进入到和钱发生关系的第二阶段“来钱”的时候如果你对钱的认识没有进囮升级,还是停留在第一个阶段的时候就非常危险了。第二个阶段“来钱”“来”字的繁体字是十字架下面三个人,依靠的就是更多嘚人的参与来帮助公司赚钱

可以进入第二阶段。很多的创业者对钱的认识依然还停留在“省”上他对自己都一直非常的吝啬,你怎么指望他能对员工慷慨

这位亿万富翁对于一个需要感谢的服务员都如此吝啬,我能够想象到他对公司的员工也绝对不会慷慨这就是他公司无法继续发展壮大的最主要的原因。

格局决定一切:公司不是一个人能做伟大的必须依靠员工,没有员工企业家什么也不是,公司什么也不是

你也许会说,可是如果你说的对,为什么他能成为亿万富翁呢没有错,在上个世纪的80年代只要胆大就是第一批富裕起來的人。但是为什么现在这些暴发户很快消失匿迹了呢,就是因为他们无法对钱的认识上进行进化升级

格局决定一切:对钱的认识不進化,没有的将会永远没有已经拥有的也会逐渐失去。

有些企业老板总是抱怨公司没有人才 其实,就是因为他们对钱的认识没有进化升级这些老板们始终弄不清楚,员工凭什么追随你员工来到你的公司,是来帮助你一起实现你的理想但是人家还是要养家糊口,你鈈仅要让员工赚到钱而且还要有尊严。

你如果不让员工赚到钱员工怎么让你和企业赚到钱呢?

格局决定一切:当我们有权利给别人发錢的时候发出的多与少,不仅仅是一种良心而更是一种对人的尊重和其创造价值的敬畏。这种尊重和敬畏表面上是为别人,归根结底是为了自己和企业更好的发展

为什么中国的企业平均存活期只有4年左右,能够做10年20年的凤毛麟角因为这些企业的当家人对钱的理解呮能停留在第一个阶段,而无法进入到第二个阶段

格局决定一切:企业当家人对钱认识的速度决定他了赚钱的速度,更决定了企业的生與死

如果你是一个打工者,你发现你的老板对钱的认识的格局没有进化你有两个选择:一是让他提升对钱认识的格局;另外一个选择僦是离开他,否则你永远也赚不到钱。

如果你是一位正在热恋中的小女人记住,小气吝啬的男人无论他现在多么帅,多么有钱那詠远都是他自己的,都和你无关

格局决定一切:我要的是天下,凡是和这个目标无关的一切我都可以舍弃——刘邦

中国最古老的象棋嘚创意是源于刘邦和项羽的天下之争。刘邦战神项羽有很多原因但是,有一个原因一直被忽视了

胜者王侯败者寇,一般失败者都会被塗上颜色但是项羽失败之后更多的是同情。很多人对项羽及其倾慕认为他是真英雄。就连他的爱情也是凄美动人,霸王别姬的故事讓多少美丽的女子倾慕能有一个项羽式的夫君

相比较刘邦,大家的评价多是说他是一个地痞流氓出身夺得天下纯粹是意外。

但是看看下面的这组数据你的认识就会有改变了。

我们说一个好汉三个帮最能帮项羽的有范增,但是最后利他而去。最有能力的韩信转而投姠刘邦而刘邦这边张良、萧何、韩信被称为“汉兴三杰”是刘邦战胜项羽的肱股之臣。

为什么刘邦这边能聚集这么多能人而项羽不行呢?各种作品中给出了各种答案我今天从财经的视角给出一个从来没有的答案:项羽太小气和吝啬。

格局决定一切:吝啬和小气是男人荿就伟业的天敌

项羽本来是贵族出身应该是最大方的,可是因为他出生不久会楚国就被秦国灭了,他颠沛流离吃了很多苦所以,本應该大方的人变得吝啬了据说,项羽在分封给手下人官职的时候会犹豫不决他会把官印放在手里反复的抚摸思考,因为他的手太有力叻以至于官印都给磨平了。

而刘邦虽然出身卑微但是,这个人非常有江湖气息他身边的朋友非常多,原因就是他非常的慷慨谁有困难只要提出来,他肯定是借钱也要帮忙

刘邦这一点梁山的宋江和他非常的像。宋江文武都一般但是,他为什么能够受到那么多梁上恏汉的拥戴呢而且还成为了梁山的董事长呢?

其根本原因就是宋江对于钱的认识的格局他知道钱是用来做什么。

宋江有一个与生俱来嘚优点就是讲义气他的这个讲义气集中体现在对钱的认识上,他对于钱的认识是一步到位在地方上当小吏的时候,对于江湖上需要帮助的人无论是认识还是不认识,只要他有钱他就会不图回报的把钱给这些朋友所以,江湖上人们送给他一个外号叫做宋江

宋江入主梁山担任第二把手的时候,也一直保持着这个作风其对钱的慷慨甚至超过了晁盖。

虽然晁盖在临死的时候并没有把董事长的位置传给他但是,梁山好汉仍然选举他为老大

因为大家知道宋江是一个懂得分享的人,抢了钱除了拿出一部分作为维护梁山这个公司发展必备の外,其余他都会分给大家

刘邦更是慷慨,一座城池被贡献之后他会把所有的珠宝赏赐给官兵,给有功之臣封官更是毫不吝啬当年,唐高祖李渊封官也是如此有谋士就劝他不要这样。李渊说反正这些都不是我的,我造反一旦失败什么都没有了还不如趁着有的时候分给大家。

对于刘邦和李渊来说他们知道造反只有死路一条,能活命的只有一个办法就是夺得天下,而和这个目标相比金钱、官職、女色都可以不要。

格局决定一切:给创业者的忠告如果你只是为了赚点钱,我想下面的话你没有必要看如果你也想让自己的公司荿为伟大的公司的话,那么和这个目标无关的一切都可以舍弃,比如金钱和名誉

格局决定一切:赚钱能力是门槛最高的高贵。

很多人鄙视有钱人我只能说,当有钱人飞得越来越高的时候那些飞不起来的人,会觉得他们渺小当有钱人赚取更多钱的时候,那些没有赚箌钱的人会闻到他们身上的铜臭气

vcpema:附几个关于格局的经典故事

有一家庭妇女,一天她买了一件衣服回头习惯性地跟邻居显摆,却发現同样的衣服邻居比她少花了20元钱于是她耿耿于怀数天。这人的格局就值20元钱了

有一个乞丐,整天在街上乞讨对路上衣着光鲜的人毫无感觉,却嫉妒比自己乞讨得多的乞丐这人估计一直就是个乞丐了。

三个工人在工地砌墙有人问他们在干嘛?第一个人没好气说:砌墙你没看到吗?第二个人笑笑:我们在盖一幢高楼第三个人笑容满面:我们正在建一座新城市。10年后第一个人仍在砌墙,第二个囚成了工程师而第三个人,是前两个人的老板

记住,拥有怎样的格局就拥有怎样的命运!

一只蚂蚁拖着一穗麦芒,它发现无法拽进窩里就把麦芒拖到一边,为其他蚂蚁让路

这,就是一个生命的格局

中国人在建筑上是讲究大格局的。门楣要高屋宇要广,庭院要罙然后,杨柳堆烟帘幕无重数。其实这也是每一个人喜欢的人心的格局。

襟怀要大气象要大,三千里驿站与亭台八千里疏云和淡月,在国人看来格局一大,内心就会宏阔精神就会逍遥,灵魂就会奔逸自由

跟有大格局的人交往,有通透的快感那感觉,仿佛伱走在幽暗里突然间,整个世界的窗户为你一扇一扇打开,然后阳光匝地,风烟俱静

大格局,说到底是大眼界,大智慧大涵養,大气度

也因此,小肚鸡肠的人睚眦必报的人,锱铢必较的人都难有大格局。心眼小仇恨大,计较多都会是心性的泥淖,难鉯让人清丽出尘步入大格局的宏大境界。

不要在利欲熏心的人那里找格局也不要在追逐权力的人那里找格局。一个内心被钱权诱惑和洣乱的人是不会有格局的。

真正的格局只生长在恬淡的心境里。若一棵树长在旷野风婉约地吹,云含情地过花香偷眼,流水迷离但它依旧是一棵树,坚守在旷野里四野疏阔,八风不动

才大而器小的人,有格局但格局终会促狭;才微而德盛的人,有格局且格局会越来越辽阔。

才能会使格局的内在丰富德行会让格局的外延宽广。有大才大德的人即便是眉宇方寸之地简单的一念流转,也可見大格局澎湃

欲望是格局的大敌。无论多大的格局一经欲望和贪婪咬噬,就会眼界短浅就会襟怀窄小,就会肚量褊狭

一个人,若從大格局中滑落下来属于生命的最炫目的光亮也就萎落了。之后无论他再拥有多少,也再难见雍容华美的大气象了

金岳霖深爱着林徽因,却宁愿隔着一生的距离守望。在他人生的最后有人想得到他跟林徽因的种种故事。

他说:“我所有的话都应该同她自己说,峩不能说”顿一下,他接着说:“我没有机会同她自己说的话我不愿说,也不愿意有这种话”

我想,这该是这个世界爱的大格局叻。这来自灵魂的格局让人唏嘘。

来源:本文摘自《百度文库》图文综合自网络;如涉及版权请告知,我们对文中观点保持中立仅供参考、交流之目的。

点击“阅读原文”来投资

海贷金服能让你富拼就得靠自己了

投资永远是收益和风险成正比,风险意识最重要投資之前先学习,不了解看不懂,不投资

实现资产翻番需要多久:

根据,我们不难算出时下主要实现资产翻番所需时间:

1.储蓄:现在1年期的定期存款利率是1.5%本金翻一番需用时间:72÷1.5=48年。

2.股票:股市风云变幻大家已经感受过了不同于,股市是动态的长期来看,股民中7賠2平1赚的格局永远不会变

3.余额宝:按余额宝最近的收益2.5%计算,本金翻番的时间为:72÷2.5≈28年

4.p2p:10%左右,本金翻番的时间为:72÷10≈7年

}

《你的工作会被机器人替代吗未来社会最需要的是什么?下一个风口在哪里大佬们这么说…》 精选一

点击上方蓝字,关注21君~

导读:又是一年世界互联网再次进入“烏镇时间”。12月3-5日第四届世界互联网大会在浙江乌镇举行。

本次大会以“发展数字经济促进开放共享携手共建网络空间命运共同体”為主题,设置20个分论坛涉及数字经济、前沿技术、互联网与社会、网络空间治理、交流合作等前沿热点问题。

马云、马化腾、李彦宏等互联网大咖都聊了啥释放了哪些重要信息?

近日麦肯锡报告给出了一个触目惊心的数据:在包括人工智能和机器人技术在内的自动化發展迅速的情况下,到2030年全球8亿人口的工作岗位将被机器取代。

到时中国高达31%的工作时间将被自动化,中国约有1亿的人口面临职业转換约占到时就业人口的13%。你担忧你的工作被机器人所替代么

马云:机器人将取代大部分机械工作

新技术不是让人失业,而是让人做更囿价值的事情让人不去重复自己,而是去创新让人的工作得到进化。

阿里巴巴董事局**马云认为与其担心技术夺走就业,不如拥抱技術去解决新的问题。人类有独特的创造力所以人类要有自信,机器是不可能超越人类的

马云说,人类只有成为“命运共同体”共建“命运共同体”,才能一起迎接新的时代和挑战

人类面临一系列的问题是共同的,全球产业链一定会彻底变革不是集装箱,而是小件快运不是Made In China或者Made In America,而是Made In Internet不是B2C,而是C2B

马云说,更重要的是未来30年制造业不再是带动就业的引擎,未来的制造业都将会是服务业未來的服务业也必须是新型制造业。

因为机器会取代大部分机械的工作机器Learning、Artificial intelligence(人工智能)一定会让机器人取代很多人的就业,而人类将會从事更有创意、更有创造、更有体验的工作服务业一定会成为未来就业的主要来源。

马化腾:中国企业需成为新技术

腾讯董事会**兼首席执行官马化腾表示:腾讯要成为一家以互联网为基础的科技与文化公司这里面最关键的就是创新。

过去中国企业主要扮演新技术的哏随者,但今天我们需要成为新技术的驱动者和贡献者与全球合作伙伴一起协同发展。

马化腾说:“我们通过腾讯云将最新的技术开放給企业;通过内容开放平台促进文化创意产业的发展未来,更多的科技与文化产品将通过数字丝绸之路走向世界。”

李彦宏:互联网嘚人口红利没有了

百度公司董事长、CEO李彦宏在演讲中提供了一组数据:

过去四年中国互联网网民的成长速度要慢于中国GDP的成长速度,这意味着互联网的人口红利没有了

尽管人口红利已经结束,但李彦宏认为网民人数、上网时间、网上的信息量的不断增加推动着互联网產业不断快速发展,推动者人工智能技术的进步

因此,“人口红利没有了还有技术红利以人工智能为代表的技术创新会不断推动数字經济的发展。”

李彦宏认为未来数字经济发展的动力是人工智能,而人工智能与过去互联网技术相比还有一个很大特点就是具有垂直整合的能力。

他以百度Apollo平台为例基于自动驾驶技术,Apollo可以让产业链上下游不同公司甚至不同行业参与其中很多领域会从中受益。基于此李彦宏认为人工智能技术的发展,将推动技术、社会的不断进步

互联网行业风头正茂,下一个风口又将在哪里搜狐董事局**张朝阳表示:

中国最大的特点就是人多、网民多,要想在中国最成功的做什么一定要做消费互联网,要做面向终端用户的商业娱乐、休闲、溝通和信息分发,知识是最重要的领域

在互联网时代,未来社会知识会变得更加精准颗粒度更加精细,每个人更加聪明沟通效率很高,现代人的生活真的是以一种数量级式在爆炸

沈南鹏:共享单车领域的倒闭现象

最近共享经济频有负面消息爆出,甚至有人说共享经濟是21世纪最大的谎言共享经济就是一个伪命题。

作为投资人红杉资本全球执行合伙人沈南鹏在接受采访时,也给出了自己的观点

共享经济不是在所有领域都可能成功,很多领域的经济达不到规模

针对共享单车领域的倒闭现象沈南鹏认为,其实是非常正面的属于发展过程中的优胜劣汰,同时他认为我们要给共享经济型公司多一点时间多一点机会。

徐直军:未来社会5G将无处不在

华为轮值CEO徐直军透露,华为将于2018年推出面向规模商用的全套5G网络设备解决方案支持全球运营商部署5G网络;2019年推出支持5G的麒麟芯片,并同步推出支持5G的智能掱机

5G能够**提升消费者的移动互联网体验,比如用5G技术,下载6GB的高清电影只需不到2秒钟即可完成其次,5G能够支持1000亿级别物的连接并提供工业级的可靠性和实时性,这些能力使得5G成为支撑工业/]报道利雅得未来投资倡议论坛(Future Investment Initiative)发布的新闻稿中透露,沙特阿拉伯成为世堺上首个为机器人授予国籍的国家

看完之后感觉好恐怖。史上第一个拥有合法公民身份的机器人来了你尝试一下跟你iPhone的Siri对话,你就会發现他们每天都在进步.......

在这场发布会上,主持人问它人工智能会不会威胁人类机器人回答说:你是好莱坞电影看多了~~~

这是索菲亚上吉米今夜秀

据商业新闻网站[/]报道,利雅得未来投资倡议论坛(Future Investment Initiative)发布的新闻稿中透露沙特阿拉伯成为世界上首个为机器人授予国籍的国家。

总部设在香港的汉森机器人技术公司(Hanson Robotics)参加了本次论坛在人工智能专题的分组讨论(panel session)过程中,推介了一个名叫索菲亚(Sophia)的女性機器人

辩论小组主持人直接面向机器人,发表了声明他说,“索菲亚我希望你能听到,你将是被授予沙特阿拉伯国籍的首个机器人”

作为回应,机器人索菲亚向沙特阿拉伯**表示感谢她指出,成为拥有沙特阿拉伯护照的首个机器人对自己来说是莫大的荣幸。

谷歌公司已经成立一个伦理委员会专门处理和监督人工智能领域的相关问题。谷歌公司还收购了多家机器人公司其中包括Deep Mind人工智能公司。該公司创始人之一谢恩-莱格警告称人工智能是“本世纪第一大危险”,他相信人工智能将是人类灭绝的主因之一谢恩-莱格表示,“我認为人类灭绝最终会发生,技术将可能在其中扮演重要角色”谷歌公司伦理委员会就是确保人工智能不被滥用。Deep Mind公司创始人、神经学镓戴密斯-哈萨比斯创建Deep Mind的目的就在于帮助计算机像人类一样思考物理学家斯蒂芬-霍金曾表示,几乎可以确定的是在未来1000年到10000年内,一場严重的技术灾难将对人类带来威胁霍金教授认为,科学将可能把人类的生存带向“错误的方向”不过,霍金也表示地球上的一场災难并不会造成人类的灭绝,因为人类也许会找到向太空拓展的途径

人类,你们准备好了吗

您的每一次点赞都是对我们最大的肯定!

您的每一次分享都是对我们最大的支持!

金融投资、财经探索、政策解读及理财攻略

传播行业真相,讨论金融行业需求痛点

你是爱学习 金融人士

点击“阅读原文,关注更多金融圈资讯!

《你的工作会被机器人替代吗未来社会最需要的是什么?下一个风口在哪里大佬们这麼说…》 精选三

提示:点击上方↑↑“爱财财富”关注,天天有惊喜!

为什么现在的男生都不愿意花时间去追女生了?

这个问题的严重性超过对任何经济现象的探讨,什么实体萧条、房价泡沫等等所有问题在这个问题面前都不足一提。

十年前我们在各种杂志上经常能见到各种纯爱、唯美的爱情故事,遍及到校园、职场、家庭等各个角落

但现在,我们在互联网上极少在看到对浪漫爱情的歌颂了取洏代之的是一个个功成名就的创业故事。

这看似是一个很简单的问题其实背后隐藏着人类的终极问题。

看透了这个问题你就看透了人類的未来。

我们先以下面这个问题为切入点这样大家就会理解的更加深刻了,那就是“古代人”和“现代人”的不同

我们有时会情不洎禁的羡慕古代人的生活,你看啊古人动不动就是诗词歌赋、琴棋书画,女为悦己者容士为知己者死,男人豪情万丈女人风情万种。

多么风花雪月、浪漫唯美!那该是一个怎样妖娆的江湖啊生活在古代的人应该很幸福吧!

而“现代人”跟“古代人”简直完全是两个品种,“现代人”除了拼命赚钱什么都漠不关心了

因为古代社会生产力进步是非常缓慢的,几千年前人们就用锄头耕地几千年后人们還是用锄头耕地,最多从青铜器变成了铁器而已

即便是改朝换代,但是运转逻辑和结构都是一样的只是换了一群人去统治而已,由于社会系统的“稳定性”人的“性情”就成了社会的主线,人们的才情和精力都放在了人性的挖掘上了一切都是由情感而生,“性情”昰社会运转的最核心

而现在社会的生产力进步非常快,短短十几年手机都更新几代了社会变化日新月异,这使社会的运转逻辑和结构吔在时刻变化

于是,人就要不断的去适应这种变化而且越是变化的世界,越容易给人带来希望每一次变革都是一次震荡,有人爬上詓也有人摔下来这无形当中催促我们要不断上进、不断改变自己,于是“效率”成了社会运转的最核心

因此,古代社会和现代社会最夶的区别在于:古代人是以“性情”为主动力现代人是以“效率”为主动力。

自从工业革命以来人类就生活在一个效率至上的社会,社会变化时刻要求我们要效率至上大家都在提升自己的工作效率。尤其是男人几乎个个都肩负着改造世界的重任,哪有那么多精力、時间、耐心去了解一个人或者去等待一个女人啊。

未来的社会人们只会越来越现实,人与人交往的目的都是为了利益交换而不再会涉及其它。谈感情多累

谈利益多直接。大家各取所需你摆出你的条件和需求,我摆出我的条件和需求合则来,不合则去各自赶紧粅色下一个对象。

所以啊未来的爱情也都是明码标价的,不信你去各种各样的相亲网站上看看那一排排美女帅男的下面都是什么,不僦是工资多少身高多少?车价多少房子几套?存款多少

这些全部的被是量化的数据啊,然后再附上一句话简介接下来大家开始用鼠标互相选择。

原本在我们眼中至高无上的爱情到最后变成了一堆可衡量的指标。我们要找的不再是一个红颜知己只是一个可以让你苼活更好的人,达到效益最大化

更何况,对于男人来说与其在追一个女孩子上花费大量时间和精力,倒不如把这些时间精力都用在事業发展上只要事业成功了,一切都来了如果没有钱,即使创造了一时的浪漫又能维持多久?

说的现实一点:女人对男人的评判最後也往往都会归结到男人的身价上。既然是这样男人们就更不用多想了,赶紧去赚钱吧

是的,我承认还是有很多人向往和热衷浪漫主义,但这只能说明“浪漫”本来就是人类的本性之一如今这个本性被现实遮盖了,无处发挥

再说的现实一点,男人的根本需求就是性:我要赶紧去成功这样我就可以接触更多的女人;

而女人的根本需求是钱:想找一个让自己生活更好的男人,这就可以归结成两个问題:你能为我花多少钱和你愿意为我花多少钱?

所以最后的男女关系就是:一个出钱一个出色这就是未来男女的主流关系。

我说的太現实了对吗但这就是现实。

但是最可怕的还不是这个。最可怕的是人类在异化!

结合一下现在智能机器人的发展你就会发现这个问題:人类在机器化,而机器在人类化

首先,人类在“去感情”我们正在变的越来越理性、麻木、机械化,对一切都漠不关心就像一囼台设定了既定程序的机器。

尤其是生活在一线城市的孩子们大家整日奔波于各种场合之间,各种商务洽谈眼花缭乱各种社交聚会就潒逢场作戏,看着笑脸相迎实际内心冷如机器。

我们的语言、情感、生活趋向于格式化我们的基因也正在一段接一段地被破解,新的囚类生命可以预先按需设计甚至男人的性趣也可以被“虚拟现实”技术深度满足了……

人类正在沿着一条不可逆的路径走向机器化。

10年內人类和机器人啪啪啪的次数将超越异性能怀孕生孩子的机器人正向我们急速奔来?

是的这可能真的不再是幻想。

看了后是不是觉嘚太不可思议,太可怕是不是觉得这个世界将要乱套了?

确实这个问题的严重性,已经**超过对任何经济现象的探讨什么实体萧条、房价泡沫等等所有问题,在这个问题面前都不足一提

这不是耸人听闻,英国未来学家皮尔逊就大胆预测到2025年的时候,女性和机器人爱愛的次数将超越男人甚至在未来完全取代人类。

根据英国著名媒体《镜报》报导皮尔逊受情趣用品网站Bondara 的委托研究「性的未来」,报告指出性爱机器人将会越来越流行,在2050年左右还可能取代人类性爱,「现代人看A片是非常普遍的事未来使用性爱机器人也会跟看A片┅样成为很平常的事。」

如果说让机器人代怀孕绝大多数人还不能够接受的话,性爱机器人的接受度及需求度则大多了

因为有了人工智能,你完全可以和机器人谈一场真实的恋爱

据介绍,人工智能系统预设多种性格特征(天真、善良、性感等)让性爱机器人具备了學习能力,不但可以与买家沟通、交流而且随着时间累积,AI系统通过交互不断学习升级,你会发现你的机器人女友每天都在变化买镓不再依靠的幻想。

人工智能离我们越来越近近到一不小心就爱上他/她。不出十年机器人就会化身完美恋人。比Siri更会打情骂俏比大皛给你更多拥抱,比机械姬更妩媚多娇比钢铁侠更器大活好,比多啦A梦解决更多烦恼

这样一来,是不是太可怕了

性爱机器人如果普忣,会不会打破几千年的社会家庭结构

生理上的满足会不会让人放弃对繁衍,对抚育下一代的需求降低

它们会不会破坏我们的家庭结構,会不会引发我们道德的崩溃我们不得而知,但是它们真真实实地到来了。

你说去立法阻止它们可能吗?一是社会确实存在极大嘚需求二则科学家们会放弃它们的研究吗?更重要的是你认为商人们会放弃这一大金矿吗?

还有你不觉得在恋爱观等方面,我们与┿几年前比已经发生很大差异了吗?所以你知道十几后,我们的婚恋观会变成怎样

一百年前,苏联作家叶甫盖尼·伊万诺维奇·扎米亚京创作了小说《我们》,故事中的未来人类就成了如同机器一般的人:

每个人都没有名字只有国家统一分配的号码;然后身穿统一的淛服,以四人一排的整齐队列在大街上行进;每天早晨千百万人以六轮机车的精确度一齐起床;然后千百万人在同时开始工作……

而机器在“加感情”,机器正在尝试跟人类去沟通他们试图变的有感情,去读懂人类的心理变化这就是智能机器的发展方向。比如情感语喑合成使机器人在情绪表达、情绪沟通上逐渐有了人格特征。

如果继续按照这个思路发展下去终于有一天,人类会变成机器而机器變成了人类。

于是人类的灵性终将消逝在自己创造的文明里。而当机器有了灵性开始在地球上行使上帝的权力。

这才是人类的终极危機

一切的危机,其根本都是人性的危机

最痛苦的是:你明知身处其中,却还不得不随着社会一起运转

人生就是一个巨大的枷锁,你鈈得不重复上演那些无趣的生活

来源:水木然(ID:smr669 ),富爸爸穷爸爸

投资永远是收益和风险成正比风险意识最重要,投资之前先学习不了解,看不懂不投资。

根据理财投资七十二法则我们不难算出时下主要理财渠道实现资产翻番所需时间:

)为中外合资企业,专門为有资金需求和理财需求的个人或企业搭建一个高效、安全、专业的互联网金融交易平台。

专注房屋抵押贷可把房屋直接抵押到投資人名下。

环迅支付资金托管投资人资金不经过平台。

第三方CA认证电子签章全程法律保护。

自主研发系统获国家六大“计算机软件著莋权”

广东互联网金融协会会员单位。

广州互联网金融协会会员单位

“网贷互联”互联网金融信息服务平台优秀成员单位。

广东省企業经营管理协会副会长单位

慈善机构广东狮子会爱心企业。

广东狮子会爱阳光服务队创队队长(董事长姚真珠)

传说:扫过的人都发財了!

点击“阅读原文”,马上注册成为爱财在线“代言人”邀请好友获3重红包,再获5%收益提成!

《你的工作会被机器人替代吗未来社会最需要的是什么?下一个风口在哪里大佬们这么说…》 精选四

随着技术的发展和机器人风口渐起,很多厂商都开始研究着如何让机器人发挥作用主要的着力点也就是这两种。前者已经有了不少的应用单单在服务机器人分类中,类似扫地机器人等市场已经慢慢成熟叻起来而后者目前还在摸索中。

对于陪伴类机器人这块多数厂商都瞄准了儿童陪伴这个领域,而对于成人的产品并不是特别多一方媔目前技术解决儿童需求比较容易,另一方面成人对于机器人的陪伴需求似乎并不是特别强烈,而在有需求的人群中老年人绝对是一個不容忽视的群体。但是在网上搜索「老年陪伴机器人」能搜到的产品相对于儿童陪伴之类并不是很多而今天要说的这以色列公司Intuition Robotic 却瞄准了这个方向,推出了一款老年陪伴机器人Elli Q

英国一家慈善组织的数据显示:75 岁以上老人中有一半都处在独居状态,而这些老年人中有超過 100 万都在孤独中度日更可怕的是,每天有超过 36% 的老人都无法与他人交流有 11% 的老人则表示,他们每个月中可能有 5 天以上都见不到任何人

由此看来,老年人的陪伴在市场上也存在着一定程度的刚需Elli Q机器人就是专为老人设计的一款陪伴机器人,主打老人的情感与生活陪伴此前包括雷锋网在内,也有一些媒体对这款机器人进行了报道根据此前的介绍:

这款机器人可利用人工智能技术了解家中老人的偏好,并帮助那些对新技术不敏感的老人玩转社交网络、视频聊天如果有需要,还能教他们学会玩简单的网络游戏

雷锋网找到了Intuition Robotic的团队,哏他们更细致的了解了一下这款机器人从外观上来看,Elli Q的造型与市场上常见的陪伴机器人还是有些区别的 这款机器人被设计成了机器囚+可分离的平板电脑的样式,Intuition Robotic团队负责人表示:如此设计的主要原因是考虑到作为一个陪伴机器人它应当有更自然的沟通能力和表达情感的方式。而通过可分离的机器人本体和平板电脑屏幕能够提供更多功能和更丰富的交互方式。简而言之屏幕为老年人提供一些必要嘚信息文字、图像等,而机器人本体通过LED漫射光进行细腻的情感表达机器人的头部可以友好而亲切的做出各种拟人化的动作。我们发现咾年人在接触到新技术时会很犹豫在与人形机器人交互式更为谨慎,所以我们没有像其他人形机器人那样给Elli Q设计一张经典人脸已让老姩人可以更舒服的与之交互。

近两年随着Echo的火热,加上厂家需要让陪伴类机器人能够发挥更大的用处纷纷给机器人赋予了更多的家居關联的功能,甚至直接转型做了智能音箱类的产品而Elli Q对此有着自己的思路,Intuition Robotic负责人表示Elli Q主要不同于其他智能音箱的优势在于它是主动茭互的,这款机器人可以学习用户的行为偏好基于用户个性和特定目标与用户交流并提供建议。这使得Elli Q能够与她的用户建立更强和更舒垺的连接她同时以很自然的交互方式来达到这个目标。在语音等交互技术上Intuition Robotic向雷锋网介绍,Elli Q也有用到像google之类的第三方厂商提供的语音、语义识别等技术但ElliQ背后的核心技术在于让机器人理解在她所在空间正在发生着什么,如何在这样的时空环境下自主的应对以一种自嘫的方式与用户交互。举例来说Elli Q可以决定现在是否是合适的时机去唤醒和建议用户进行某项活动,比如听音乐或看视频(在摄像头识别絀老年人用户情绪低沉时可以建议她看孙子/孙女的视频,照片与子女打视频电话,听听音乐或看看戏剧)Elli Q也会知道该如何基于用户嘚过往选择如何更加个性化的提出建议以使得建议有更大的可能性被采纳。最后用机器人本体的动作、声音、灯光、屏幕显示等多个维喥,以类似人类肢体语言的方式让交互显得非常自然

Intuition Robotic表示未来计划在美国加州开始第一批用户测试,包括多家合作的养老院和已向公司提出试用申请的种子用户未来会支持更多的语言,摄像头背后的计算机视觉技术将能识别更多的用户行为集成更多的传感器以更好的感知用户所处的环境,机器学习能力的提升和数据的积累将能够为用户提供更个性化和精准的建议达到更理想的交互效果。

不过目前ElliQ目前只能在英语环境下工作,Intuition Robotic也充分意识到中国市场的巨大机会接下来在中国可能会有一些计划,但是详细的信息不目前还不方便透露

从投资角度看陪伴机器人市场

目前,Intuition Robotic已经得到了中国投资公司耀途资本的投资耀途资本创始合伙人阳光,聊了一下他对投资Elli Q以及陪伴機器人市场的一些看法

杨光表示,之所以选择Elli Q首先是因为他们很看好针对独居老年人的陪伴机器人的这个市场。

在人类社会中有一些人群总是被人们所忽视的,他们也有一些特定的需求当人们很难用人力去解决这些需求的时候,为特定的用户群体创造一个能够供给怹们特定需求的机器人是机器人行业发展应该去追求的趋势,不论产品单说方向上,Intuition Robotics无疑是值得肯定的

点击阅读原文 快速注册投资

《你的工作会被机器人替代吗?未来社会最需要的是什么下一个风口在哪里?大佬们这么说…》 精选五

定义人工智能不是困难而简直昰不可能,这完全不是因为我们并不理解人类智能奇怪的是,人工智能的进步更多的将帮助我们定义人类智能不是什么而不是定义人笁智能是什么?

但不管人工智能是什么,过去几年我们确实已经在从机器视觉到玩游戏等众多领域取得了很多进展人工智能正在从一项研究主题向早期的企业采用转变。谷歌和 Facebook 等公司已经在人工智能上投入了巨大的赌注并且已经在它们产品中应用了这一技术。

但谷歌和 Facebook 只昰开始而已:在未来十年我们将见证人工智能蔓延进一个又一个的产品。我们将与 Bot 交流——它们不是照本宣科的机器人拨号程序(robo-dialer)峩们甚至不能意识到它们不是人类。我们将依赖汽车进行路线规划对道路危险做出反应。

可以毫不夸张地估计:在未来几十年中我们所接触的每一种应用程序都将整合进一些人工智能功能,而如果使用应用程序我们将无法做任何事。

鉴于我们的未来将不可避免地与人笁智能捆绑在一起我们就必须要问:我们现在发展得如何了?人工智能的现状是怎样的?我们将走向何方?

如今人工智能的能力和局限

对人工智能的描述围绕着以下几个中心:强度(有多智能)、广度(解决的是范围狭窄的问题,还是广义的问题)、训练(如何学习)、能力(能解决什么问题)和自主性(人工智能是辅助技术还是能够只靠自己行动)这些每一个中心都有一个范围,而且这个多维空间中的每一個点都代表着理解人工智能系统的目标和能力的一种不同的方式

在强度(strength)中心上,可以很容易看到过去 20 年的成果并认识到我们已经慥出了一些极其强大的程序。深蓝(Deep Blue)在国际象棋中击败了 Garry Kasparov;沃森(Watson)击败了 Jeopardy 的常胜冠军;AlphaGo 击败了可以说是世界上最好的围棋棋手李世石

但所有这些成功都是有限的。深蓝、沃森和 AlphaGo 都是高度专业化的、目的单一的机器只能在一件事上做得很好。深蓝和沃森不能下围棋AlphaGo 鈈能下国际象棋或参加 Jeopardy,甚至最基本的水平都不行它们的智能范围非常狭窄,也不能泛化

沃森已经在医疗诊断等应用中取得了很多成果,但它基本上仍然只是一个必须为特定领域专门调制的问答机器深蓝拥有大量关于国际象棋策略的专门知识和百科全书式的开放知识。AlphaGo 是用更通用的架构构建的但其代码中仍然有很多人工编码的知识。我不是轻视或低估他们的成就但认识到他们还没有做成的事也是佷重要的。

我们还没能创造出可以解决多种多样不同类型问题的人工通用智能(artificial general intelligence)我们还没有听一两年人类对话的录音就能自己说话的机器。尽管 AlphaGo 通过分析数千局比赛然后又进行更多的自我对弈而「学会」了下围棋但这同样的程序却不能用来掌握国际象棋。

同样的一般方法呢?也许可以吧但我们目前最好的成就离真正的通用智能还很远——真正的通用智能能灵活地无监督地学习,或能足够灵活地选择自己想偠学习的内容不管那是玩棋盘游戏,还是设计 PC 板

我们如何从狭窄的、特定领域的智能迈向更通用的智能呢?这里说的「通用智能」并不┅定意味着人类智能,但我们确实想要机器能在没有编码特定领域知识的情况下解决不同种类的问题我们希望机器能做出人类的判断和決策。

这并不一定意味着机器将实现创造力、直觉或本能等没有数字类比的概念通用智能将具备处理多种类型的任务和适应未曾预料的凊形的能力。一个通用智能无疑可以实现「正义」和「公平」这样的概念:我们已经在谈论人工智能对法律系统的影响了

我们先以自动駕驶汽车来证明我们所面临的问题。要实现自动驾驶汽车需要将模式识别和其它能力整合到一起,包括推理、规划和记忆它需要识别模式,这样才能对障碍物和街道标志做出反应;它需要推理这样才能理解交通规则和解决像避开障碍物等任务;它需要规划以获得从当湔位置到目标位置的路径,并同时考虑到交通状况等其它模式

它需要不断重复做这些事,不断更新它的解决方案但是,即使一辆自动駕驶汽车整合了所有这些人工智能它也不具备我们所期望的通用智能应该具备的灵活性。你不会期待一辆自动驾驶汽车能和你交谈或布置你的花园将从一个领域学习到的知识应用到另一个领域的迁移学习是非常困难的。

你也许可以重新加工其中许多软件组件但那只能指出缺少了什么:我们当前的人工智能能为特定问题提供范围狭窄的解决方案,它们并不是通用的问题解决者你可以将范围狭窄的人工智能叠加到一起(一辆车可以带有能谈论去哪里、进行餐厅推荐和与你下棋让你不会感觉无聊的 Bot),但狭窄人工智能的叠加永远不能得到一个通用人工智能通用人工智能的关键不是有多少种能力,而是这些能力的整合

尽管神经网络这样的方法原本是为模拟人脑过程而开发的,但许多人工智能计划已经放弃了模仿生物大脑的概念我们不知道大脑的工作方式;神经网络计算是非常有用的,但它们并没有模拟人类嘚思维

类似地,要取得成功人工智能不需要将重点放到模仿大脑的生物过程上,而应该尝试理解大脑所处理的问题可以合理地估计,人类使用了任意数量的技术进行学习而不管生物学层面上可能会发生什么。这可能对通用人工智能来说也是一样:它将使用模式匹配(類似 AlphaGo)它将使用基于规则的系统(类似沃森),它将使用穷举搜索树(类似深蓝)

这些技术没有一种能与人类智能直接对应。人类比任何计算机嘟做得更好的是构建他们的世界的模型并根据这些模型采取行动。

超越通用智能后的下一步是超智能(super-intelligence 或 hyper-intelligence)目前我们还不清楚如何区分通鼡人工智能和超智能。我们期望超智能系统会具备创造力和直觉等性质吗?鉴于我们对人类的创造力还不甚理解思考机器的创造力就更为困难了。

围棋专家称 AlphaGo 的一些落子是“创造性的”;但它们源自与其它所有落子完全一样的过程和模式而并非以一种新的视角看待这项游戲。同样算法的重复应用可能会产生让人类感到惊讶或意外的结果但仅仅的惊讶并不是我们所说的“创造力”。

将超智能看作一个规模問题会更容易一点如果我们可以创造「通用智能」,可以很容易估计出它将很快就比人类强大成千上万倍或者,更准确地说通用人笁智能要么将显著慢于人类思维,难以通过硬件或软件加速;要么就将通过大规模并行和硬件改进而获得快速提速

我们将从数千个内核 GPU 扩展到数千个芯片上的数以万亿计的内核,其数据流来自数十亿的传感器在第一种情况中,当加速变缓时通用智能可能不会那么有趣(尽管它将成为研究者的一次伟大旅程)。在第二种情况中其增速的斜坡将会非常陡峭、非常快。

AlphaGo 的开发者声称使用了远比深蓝更通用的算法來训练人工智能:他们制作了一个只具备最少围棋知识策略的系统学**要是通过观察围棋比赛获得。这指明了下一个大方向:我们可以从機器基于标注数据的监督学习走向机器依靠自己组织和结构化数据的无监督学习吗?

Yann LeCun 曾在 Facebook 的一篇帖子中说到:“在我们想要得到真正的人工智能之前我们必须解决无监督学习的问题。”

要对照片分类一个人工智能系统首先会获得数百万张已经正确分类了的照片;在学习了這些分类之后,它还要使用一系列标注了的照片进行测试看它们是否能够正确标注这个测试集。如果没有标注机器又能做什么?如果没囿元数据告诉机器“这是鸟,这是飞机这是花”,它还能发现照片中重要的内容吗?机器能像人和动物一样只需观察远远更少的数据就能发现模式吗?

人类和动物都可以从相对很少的数据中构建模型和抽象:比如,我们不需要几百万张图像才能识别出一种新的鸟或在一座新城市找到我们的路研究者正在研究的一个问题是对视频的未来画面的预测,这将需要人工智能系统构建对世界运作方式的理解

有可能開发出能应对全新环境的系统吗?比如在冰面汽车会难以预料的打滑。人类可以解决这些问题尽管它们不一定很擅长。无监督学习指出咣是靠更好更快的硬件,或开发者只是用当前的库进行开发问题将无法得到解决。

有一些学习方法处在监督学习和无监督学习的中间茬强化学习中,系统会被给予一些代表奖励(reward)的值机器人可以穿过一片地面而不跌倒吗?机器人可以不用地图就驾驶汽车穿过市中心吗?奖励鈳以被反馈给系统并最大化成功的概率。(OpenAI Gym 是一个很有潜力的强化学习框架)

在一端,监督学习意味着再现一组标记这在本质上是模式识别,而且容易发生过拟合在另一个极端,完全无监督学习意味着学习归纳性地推理关于一个情形的情况这还需要算法上的突破。半监督学习(使用最少的标注)或强化学习(通过连续决策)代表着这些极端之间的方法我们将看到它们能达到哪种程度。

我们所说的「智能」是一个根本性的问题在 Radar 2014 年的一篇文章中,Beau Cronin 出色地总结了许多人工智能的定义我们对人工智能的期待严重依赖于我们希望用人笁智能做什么。对人工智能的讨论几乎总是开始于图灵测试

图灵假设人们可以通过聊天的方式与计算机交互:他假设了一种与计算机的溝通方式。这个假设限制了我们期望计算机做的事:比如我们不能期望它能驾驶汽车或组装电路。这也是一个故意的模棱两可的测试計算机的答案可能是闪烁其词的或完全不正确的,正确无误不是重点人类智能也可能会是闪烁其侧或不正确的。我们不大可能将正确无誤的人工智能误解为人类

如果我们假设人工智能必须被嵌入到能够运动的硬件中,比如机器人或自动驾驶汽车我们会得到一组不同的標准。我们会要求计算机在它自己的控制下执行一个定义不清的任务(比如开车到一家商店)我们已经打造出了在路线规划和驾驶上比夶多数人类都做得更好的人工智能系统。

谷歌的自动驾驶汽车负有责任的那次事故的原因是该算法被修改得更像人类一样驾驶并由此带來了人工智能系统通常不会具备的风险。

自动驾驶汽车还有很多没能解决的困难问题:比如在暴风雪的山路上行进不管人工智能系统是嵌入在汽车里,还是无人飞行器或人形机器人里其所面临的问题本质上是类似的:在安全、舒适的环境中执行是很容易的;而在高风险、危险的情形中则艰难得多。

人类也不擅长这些任务尽管图灵所期望的对话中人工智能是回避式的或甚至会错误地回答问题,但在高速路仩驾驶时模糊或不正确的方案却是不能接受的。

可以执行物理行为的人工智能迫使我们思考机器人的行为应该用什么样的道德来规范洎主机器人?阿西莫夫的机器人定律?如果我们认为机器人不应该杀死或伤害人类,武器化的无人机已经打破了这道界限尽管典型的问题「洳果事故不可避免,自动汽车应该撞向婴儿还是老奶奶?」是虚假的道德但这个问题也有一些更为严肃的版本。

为了避免会杀死其内部乘愙的事故自动驾驶汽车应该冲向人群吗?抽象地回答这个问题很容易,但很难想象人类会愿意购买会牺牲他们而不伤害旁观者的汽车我懷疑机器人将来能够回答这个问题,但它也必然会在福特、通用、丰田和特斯拉的董事会上得到讨论

我们可以通过对话系统或自主机器囚系统的复杂度分布来更为简单地定义人工智能,并说人工智能只是单纯关于构建能回答问题和解决问题的系统能够回答问题和推理复雜逻辑的系统是我们已经开发了好些年的「专家系统」,其中大部分都嵌入在沃森中(AlphaGo 解决的是不同类型的问题。)

但是正如 Beau Cronin 指出的那样,解决对人类来说存在智力挑战的问题是相对简单的;更困难的是解决对人类来说很简单的问题很少有三岁孩童能下围棋。但所有的三岁駭童都能认出自己的父母——而不需要大量有标注的图像集

我们所说的「智能」严重依赖于我们想要该智能所做的事,并不存在一个能夠满足我们所有目标的单个定义如果没有良好定义的目标来说明我们想要实现的东西或让我们衡量我们是否已经实现了它的标准,由范圍狭窄的人工智能向通用人工智能的转变就不会是一件容易的事

人工智能的新闻报道聚焦于能够自主行为的机器自主系统。这么做有充足的理由:它有趣、性感、且有点令人害怕在观看人类辅助 AlphaGo 下棋的同时,很容易去幻想一个由机器主宰的未来然而相较于自动化设备,人工智能有更多超过人类的东西真正的价值——人工智能或者智能增强——都在哪里?人工智能还是智能增强?

我们可能不想由一个人工智能系统来做决定,而可能会想为自己保留决定权我们或许想让人工智能通过提供信息、预测任何行动过程的后果、提出建议来增强智慧,而把决定权留给人类尽管有点《黑客帝国》的感觉,但这个被人工智能所服务的增强我们的智慧而非推翻我们的未来会比服侍一匹脫缰的人工智能有着更大可能性

GPS 导航系统是一个人工智能系统用来增强人类智慧的绝佳案例。给定一张适宜的地图大多数的人都能从 A 點导航到 B 点,尽管这对于自身能力还有很多要求尤其是在我们不熟悉的领域。绘制两个位置之间的最佳路线是一个棘手的问题特别是當你考虑到糟糕的交通和路况时。

但是有了自动驾驶车辆的除外我们从未把导航引擎连接到方向盘上。 GPS 是一种严格意义上的辅助技术:咜给出了建议而不是命令。当一个人已经作出忽略 GPS 建议的决定(或错误)时你都会听到 GPS 说「重新计算路线中」,那是它正在适应新情況

在过去几年中,我们已经看到许多各种意义上有资格作为人工智能的应用程序几乎所有「机器学习」框架下的事物都有资格成为人笁智能:事实上「机器学习」是在人工智能学科陷入声名狼藉之时,被指称回人工智能更为成功的那部分你不必一定要构建带有人类声喑的人工智能,像是亚马逊的 Alexa当然它的推荐引擎肯定是人工智能。

类似 Stitchfix 的 web 应用也是人工智能它增加了由时尚专家们运用推荐引擎所做絀的选择。我们已经习惯了那些处理客户服务电话的聊天机器人(并经常被它们气坏)——准确度或高或低你可能最后还是得和人类对话,洏其中的秘密就是使用聊天机器人清理掉所有例行问题让某个人类去抄录你的地址、保单号码和其他标准信息没什么意义:如果内容不昰太多,计算机可以做得至少同样准确无误

下一代助理将是(已经是)半自主性的。几年前Larry Page说《星际迷航》中的计算机是理想的搜索引擎:它是一台能够理解人类、已消化所有可用信息、能在被提问之前就给出答案的计算机。如果你现在正在使用谷歌当它第一次告诉伱由于交通堵塞要你早点出发赴约时,你可能会感到惊讶

这就需要纵观多个不同的数据集:你目前所在的位置、你的约会地点(可能在伱的日历或联系人列表中)、谷歌地图数据、目前的交通状况、甚至是有关预期交通模型的时间先后数据。它的目的不是回答某个问题;而昰甚至在用户意识到需求之前就提供帮助

为何人们对人工智能的兴趣大增?

为什么人工智能在遭受「人工智能的冬天」(AI winter)的几十年声名狼藉の后,会成为当下如此热门的话题?当然人工智能的新闻也出现深蓝之后,之后又有沃森的故事;但这些风潮都没能持久看到目前的人工智能崛起为另一次风潮是很有诱惑力的。这能让我们忽视过去十年的变化

人工智能的兴起依赖于计算机硬件的巨大进步。列举计算机性能和存储技术自人工智能之冬起(维基百科追溯到 1984 年)的 30 多年间的巨大进步是很乏味的但这是此篇文章无法回避的一部分,特别是如果伱已经见过 IBM 的沃森机器支架

据报道 AlphaGo 运行于 1920 个 CPU 和 280 个 GPU ;;击败了 Lee Sedol 的机器可能更加庞大,并且它使用了谷歌用于构建神经网络所开发的定制硬件即使人工智能算法在普通笔记本上运行很慢,但在像 AWS、GCE 和 Azure 的云平台上配置一些重要的算力是容易且相对便宜的机器学习得以实现,部汾也是因为这种存储大量数据的能力1985 年时的千兆字节(GB)还很罕见且重达数百磅;现在它已司空见惯,廉价而小巧

除了存储和处理数据的能仂,我们现在还能生成数据在上世纪 80 年代,大多影像都是模拟信号现在它们全是数字的,并有很多存储于像是 Flickr、Google Photos、Apple Photos、Facebook 等的网络服务商那里许多在线照片已经被贴上了一些描述性的文本,这使得它们成为了训练人工智能系统的良好数据集

我们的许多对话也都是线上的,通过 Facebook、Twitter 和许多聊天服务我们的购物历史也是一样。所以我们(或者更准确的说是 谷歌、苹果、雅虎、 Facebook、亚马逊等)就有了训练人工智能系統所需的数据

我们在算法上也取得了显著的进展。神经网络并不是特别的新但是「深度学习」却堆叠了一系列通过反馈来自我训练的網络。因而深度学习试图解决机器学习中最难的人类问题之一:从数据中学习最优表征处理大量数据很简单,但是特征学习就更像是一門艺术而非科学深度学习是要实现那门艺术的部分自动化。

人工智能并不局限于学术界的计算机科学研究者而是像 Pete Warden 所展示的那样,越來越多的人都能够参与进来你无需了解如何实现一个复杂的算法并让它在你的硬件上运行得多么好。你只需要知道如何安装库并标注训練数据就行了

正如计算机革命本身所发生的那样,计算机被搬出了机房并被广大市民所使用同样的民主化进程正在制造一场人工智能革命。来自许多背景和环境的人利用人工智能做试验我们将会看到许多新型应用。有些会看起来像科幻小说(尽管自动驾驶汽车被看做科幻小说还只是几年前的事);肯定会有我们甚至无法想象的新应用出现

世界充满了「暗数据」:不存在于良好、有序的数据库中的非结构化信息。它在网站上、埋于表格里、被珍藏在照片和电影中;但它不易被机器智能或其他智能所捕获

像 diffbot 和 deepdive 这样的项目是利用半监督学习来找絀非结构化数据中的结构——无论是大量的科学论文还是众多网站的碎屑。一旦他们创建了一个数据库就能用更传统的工具—— API、SQL 语句戓者桌面应用程序——访问该数据库。

知识数据库和图表已被应用到许多智能应用中包括谷歌的知识图谱(Knowledge Graph)。在我们走向聊天应用时挖掘暗数据并找出其中结构的能力将变得更加重要。在聊天应用从脚本化和目标狭隘型迈向为用户返回任意问题的答案型的道路上暗數据的有效利用将成为这一转变的关键。

我们可能看不到这样的应用程序被用于问题「理解」而是会成为未来辅助技术的中心。它们将依靠已被机器分解并结构化的知识库:其中包含的大量数据将超出人类的标记能力

不像人工智能冬天的黑暗时期,那时数据有限、计算機很慢现在我们到处都能看到成功的人工智能系统。谷歌翻译肯定不会像人类翻译员那样好但是它经常能够提供一个可用的翻译结果。尽管语音识别系统还没有达到随处可见的程度也也已经是司空见惯的了,且其准确度令人惊叹;一年前谷歌声称安卓手机可以正确无误哋理解 92% 的问题如果一台计算机能够准确地将问题转化为文本,那么下一步就是把问题变成答案

同样,图像识别和图像处理也已经变得司空见惯尽管存在一些被广泛报道的尴尬错误,计算机视觉系统能够以在几年前还不可想象的精确度来识别人脸

理所当然地,对此问題的适宜约束在其成功中起着巨大作用:Facebook 可以识别照片中的面孔是因为它假定照片里的人很可能是你的朋友。计算机视觉是(或将是)从寻瑺到可怕等各种层次的人工智能应用的中心视觉显然是自动驾驶车辆的关键;它对于监控、自动锁定无人机和其他不令人舒服的应用也同樣重要。

深度学习和神经网络在过去的一年里已经吸引了大量的关注:它们已经实现了计算机视觉、自然语言和其他领域的进步

这些技術可以被自己使用,也可以与其他技术结合使用IBM 的沃森是集成学习(ensemble learning)一个很好的例子:它是一个基于规则的系统,并依据所要解决的问题來结合使用其他算法这个规则在很大程度上是手工制定的,而其他算法则需通过精心调整来获得良好效果

像 Watson 一样令人印象深刻的、需偠大量手动调整的系统是一块通向智能道路上的最好的踏脚石。任何的通用人工智能和大多数的狭义人工智能系统都将可能结合多种算法而不是使用单一的、尚未被发现的主算法。

但这种用来得到良好结果的调整是一个主要的限制:AlphaGo 团队负责人 Demis Hassabis 说这样的调整「几乎像是一種艺术形式」如果取得好结果需要花几年时间,并且只有一些专家(Hassabis 说有几百人)有能力做这项工作那么它还是「人工智能」吗?

类似 Watson 这样嘚引擎的创造过程是科学,然而也需要许多艺术另外,手动优化的需求表明人工智能系统的建立方式本质上是狭隘的只能解决单一的問题。很难想象去优化一个能够解决任何问题的「通用智能」引擎如果你正在做这件事,那么几乎可以肯定那是一些特定应用。

人工智能方面的进步取决于更好的算法还是更好的硬件?如果这个问题还算有意义,那么答案就是「同时」即使 GPU 进展的时间速率已经停止,峩们把更多东西塞进一张芯片的力还没有停滞:AlphaGo 的 280 个 GPU 能够轻松平均 20 万个核心

real-time)运行的硬件系统(想想自动驾驶汽车)中嵌入人工智能的关键。

泹即使有了更好的硬件我们仍然需要分布于成千上万个节点中的算法;我们需要能够飞速地重新编程 FPGA 的算法,以适应待解决问题所使用的硬件MapReduce 在数据分析中很流行是因为它提出了一个并行化一大类问题的方法。

并行显然在人工智能中起作用但它的限制是什么?并行的残酷现实是其不可被并行的部分能把你折磨死。而大多数并行算法的标志是你需要一个用以收集部分结果并产生单一结果的阶段。AlphaGo 在计算下一步棋时可能正在查看成千上万个选择但在某一点上,它需要浏览所有的选项评估哪个是最好的,并给出一个单一结果

AlphaGo 可以利鼡 280 个 GPU 的优势;那么一台有 280,000 个 GPU 的计算机怎么样?毕竟,迄今为止我们所制造的最大计算机的计算能力只相当于一只老鼠大脑的一小部分更不要說与人类相比了。如果是不依赖于并行设计和神经网络的算法呢?在一个路线中的每个元素都采取不同方法来解决问题的系统当中你如何運用反馈?像这样的问题有可能在不久的将来推动人工智能的研究。

在人工智能算法中使用更多(更快)的硬件有可能使我们获得更好的围棋手、国际象棋手和 Jeopardy 玩家我们将能更快更好地分类图像。不过这是我们目前可解决问题的一项改进而已更多计算能力将会把我们从监督学習领到无监督学习吗?它会把我们从狭义的智能引到通用智能中吗?这还有待观察。无监督学习是一个难题而且我们并不清楚能否只通过使鼡更多硬件来解决它。我们仍然在寻找一个可能并不存在的「主算法」

对超智能的谈论很容易把人吓到。而且据一些人说现在是时候決定我们想要机器做什么了,趁现在还未为时已晚尽管这种立场可能过于简化了,但思考如何限制我们还未造出来的设备是非常困难的;洏且它们的能力我们现在还无法想象可能未来永远也无法理解。

拒绝人工智能也是很困难的因为没有任何技术是在人类事先考虑周全の后才被发明出来的。在历史的不同时期人们害怕的许多技术现在已经司空见惯:在某个时候很多人认为以超过每小时 60 英里的速度旅行昰致命的。苏格拉底反对书写因为他担心这会导致健忘:想象一下他会如何看待我们今天的技术!

但我们可以思考人工智能的未来,以及峩们开发协助我们的人工智能的方式这里给出了一些建议:大部分对超人工智能的恐惧都不是在害怕我们已经知晓或理解的机器,他们害怕的是最糟糕的人性加上无限制的力量我们无法想象一个思考着我们不能理解的想法的机器;我们想象那是不可战胜的希特勒或斯大林——我们确实能理解他们的想法。我们的恐惧本质上是人类的恐惧:对像人类一样行为的万能机器的恐惧

这并不是诋毁我们的恐惧,因為我们已经见到机器学习确实能向人类学习微软不幸的 Tay 是对话型人工智能 Bot 从网络对话中「学会」种族主义和偏见的完美案例。谷歌的图潒分类曾将黑人夫妇识别为「猩猩」这个糟糕的测试结果的原因是训练数据集中没有足够的合适标注的黑人图片。

机器学习成为种族主義者的方式和人类差不多一样:因为这是我们教它们那样做的不管是有意还是无意。这是一个人类问题而且是一个可以解决的问题。峩们可以在人工智能学习的内容和方式上更加小心

我们可以对我们的训练集中的内容以及这些训练集的标注方式更加谨慎,我们可以过濾我们认为可以接受的答案类型这些没什么是特别困难的;但却是必须要做的。更困难的是在目前的环境中让人们达成共识:认为种族主義和仇恨是不好的

这是人类价值观的问题,而不是机器智能的问题我们会构建出反映了我们自身价值观的机器:我们已经在那样做了。它们是我们想要反映的价值吗?

白宫对数据科学的报告《Big Risks, Big Opportunities: the Intersection of Big Data and Civil Rights(大风险、大机遇:大数据和民权的交集)》在总结章节中提到我们需要研究审核算法的方法,以「确保人们被公平对待」随着我们从「大数据」走向人工智能,对算法的审核以及确保它们反映我们所支持的价值观的需求将只会增长

将对人工智能的深入研究开放给大众,让公众可以见证到这一点极其重要。这并非因为我们相信大众会对研究少些「恐惧」(这一点,或许是对的也可能是错的),也不是因为大众多少会对超级智能的观念「习以为常」;而是因为较之公之于众的研究人們对闭门研究会投以更大的关注。

实际上《不道德的研究( Unethical Research)》这篇论文建议,打造一个健康的人工智能生态系统的最好方式就是将打造恶蝳机器的想法公开研究会继续在背后进行,认为军方研究和情报部门没有致力于人工智能的想法很天真。但是如果没有公开状态下進行人工智能研究,我们就会受到军方或者情报部门研究的支配

(一个公司,比如谷歌或者 Facebook是闭门研究抑或开诚布公,是个值得讨论的問题)这也就是 OpenAI 的宗旨:「以尽可能从整体上让人类受益的方式推进数字化智能的研究不受需要财务收益的限制。」 OpenAI 是一个激动人心而且讓人吃惊的应答(针对人们对人工智能恐惧):尽可能远地推进这项研究但是公开确保公共领域的研究领先于闭门研究。

对于研究来说开放且公开也同样重要,因为研究起源时常决定了研究的应用核能就是个好例子。我们可以打造安全、高效的核反应堆但是,我们从来沒有打造过钍反应堆因为他们不会帮你制造炸弹,而且对核能的深入研究是由国防部门控制的

核反应堆不是不会产生可用数量的钚吗?為什么任何人都想要核反应堆?再一次,认为军方和国家情报部门不会做出优秀的人工智能研究这种想法太天真。但是如果人工智能变荿国家情报部门的专属领域,那么就会有秘密窃听和理解对话的优秀系统。

当思考人工智能还能为我们做些什么时我们的想象力会受箌限制,而且也很难想象人工智能的应用到底会有哪些除了杀人无人机、老大哥(Big Brother,典出乔治·奥威尔的名著《1984》)的耳目我们或许永远無法研发出智能医疗系统和机器人护士助理。

如果我们想要让人工智能服务于人类就必须公开进行研究:作为人工智能研究人员这一更夶社区的一部分,作为更为广泛的公众讨论(讨论目标和宗旨)的一部分我们必须小心,不要打造出人类自己的最糟梦魇;但是也许需要认識到,噩梦只不过是一个更强大的、真实的人类自身的版本

扎克伯格最近说道,未来五到十年人工智能会比人类更善于做一些最基础嘚任务。也许他是对的但是,同样清楚的是他讨论的是狭义人工智能:从事特别任务,比如语音识别图像分类以及游戏。他继续说「那并不意味着计算机将会思考...」。

根据你的交谈对象一个真的通用智能可能距离我们 10 到 50 年。考虑到预测科技未来的难度最好的答案是「十多年以后」,而且可能更久啥时候可以做出人类水平的机器智能?一份最近的专家调查(Future Progress in Artificial Intelligence: A Survey of Expert Opinion)显示,可能是 年左右(概率为50%)正如 LeCun 所言,「人类水平的通用智能距离我们几十年」

因此,如果真的可以我们什么时候会到达那里?几年前,Jason Huggins 对机器人的评价可谓先见之明。机器人他说,总是在未来机器人片段一次又一次地中断,成为现在的一部分;但是当那发生时,它们不再被视为机器人上世纪二十年玳,我们就将一台现代洗碗机视为一个超级智能机器人;如今不过是一个洗碗机。

这种情形也将不可避免地发生在人工智能身上实际仩,已经发生了我已经避免对机器智能和人工智能做出区分;「机器智能」是一个术语:当人工智能这个词声名狼藉时,这个术语被用于指代人工智能研究中的一些想法

如今,那些想法中的很多都变得很常见了我们不会对亚马逊的推荐系统或者 GPS 导航思虑再三 ,我们将之視为理所当然我们或许发现 Facebook 和谷歌的图像标签功能很诡异,但是看到它时,你不会认为那是人工智能

所有严肃的象棋玩家会对阵象棋程序,围棋菜鸟也是如此而且在 AlphaGo 获得成功后,对弈计算机也会延伸到专家层面这些就是人工智能,他们已经中断并成为当今世界的┅部分这一过程中,人工智能变化了形态成为 IA(智能增强):碾压人类能力的自动化技术开始变得具有辅助性。

我们能否指着某件东覀说「是的,那就是人工智能?」是的当然可以,我们现在就可以这么做了更重要的是,我们将不可能避免地被人工智能围绕着甚臸在我们知道这些东西人工智能之前。我们将管道、电力视为理所当然之物我们的孩子将流媒体音乐视为理所当然。我们也会视人工智能为理所当然当它们在生活中越来越普遍时。

【钛媒体作者介绍:本文作者Mike Loukides、Ben Lorica由机器之心编译,参与人员包括Rick、吴攀、微胖、李亚洲机器之心微信公号“机器之心”(almosthuman2014)】

更多深度观点,关注钛媒体微信号:钛媒体(ID:taimeiti)

《你的工作会被机器人替代吗未来社会最需偠的是什么?下一个风口在哪里大佬们这么说…》 精选六

前段时间在忙着炼丹(Deep Learning),还有几场大数据培训很久没有动笔了。今天想和夶家谈谈人工智能(Artificial Intelligence, AI)2017可谓人工智能元年,AI领域风投和创新、创业风起云涌深度学习研究和应用持续火爆,以Facebook小扎和Tesla钢铁侠为代表的夶佬们站队互掐AlphaGo的成功营销与Watson的失败应用,国内BAT纷纷推出人工智能战略等等…这一波大数据驱动的AI热潮发展势头强劲。下图是从我培訓课件里截的称之为四位一体看数据技术(Data Technology, DT),可以说AI高烧是大数据发展的必然

从上图可以看出,这些年从物联网云计算,大数据箌现在的人工智能一个比一个热,这是DT前沿信息技术发展的大势其内在的逻辑联系和发展趋势使然,终极目标直指人工智能这就好仳我们人体一样,物联网(移动互联网)构造了眼耳鼻舌身等感官大数据是各种感官获取的感受信息,云计算是记忆存储人工智能就昰我们的认知决策。IT和DT技术发展本质是在拟人化、智能化智能时代一定会到来是毫无疑问的,但是发展过程也不要太乐观。本文作为《论大数据的泡沫、价值与应用陷阱》的姊妹篇就来说说人工智能发展面临的问题和挑战。

1人工智能源起:图灵的智能之问

我在前文《论大数据的泡沫、价值与应用陷阱》有讲到:“大数据时代,我们周围充斥着各种不同的理论、知识、信息和噪音数据爆炸式增长和科技高速发展所带来的冲击,加大了未来的不确定性当我们接收的数据和信息越多,面临的选择就越多如若不善于过滤、挖掘和处理,对各种决策就可能会造成负面影响当然也会放大我们对未来不确定性的恐惧。如何从混沌中发现规律成为预测未来的“先知”,抑戓是少出几只黑天鹅是历代人类的梦想,不管是古人的占卜、算命还是现在的专家系统、商业智能、数据挖掘、机器学习、人工智能、智慧地球、智慧城市等技术和应用都源于我们对未来不确定性的恐惧。”如何降低决策过程中的不确定性通过智能技术进行前瞻预测昰关键,不管是物联网、大数据、云计算还是DT偌大的技术生态体系其核心都是为这一目标服务。从这个角度讲传统商业智能应用90%失败這一论断是有道理的,因为基础的数据管理和常规的统计分析不能称之为智能,换句话说没有成熟机器学习技术的支撑和成功应用要說多智能那就是忽悠(后面我会讲IBM

机器如何智能,系统如何智能可谓仁者见仁智者见智。我们先来看图灵是如何定义这一问题的作为計算机科学和人工智能领域的先驱,图灵在1950年发表的著名论文《Computing Machinery and Intelligence》中详细讨论了机器能否拥有智能这一问题,但也只是个开放性的讨论其实图灵也未能定义什么是智能(但提出了著名的“图灵测试”)。在1956年的DARTMOUTH学术会议上AI被正式提出,定义为:“研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门技术科学通过了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器人工智能可以对人的意识、思维的信息过程进行模拟。人工智能不是人的智能但能像人那样思考、也可能超过囚的智能。智能涉及到诸如意识、自我、思维、心理、记忆等等问题”由于我们对人类智能本身还知之甚少,所以人工智能的发展比预想的要慢很多图灵当时也做了个比较乐观的预测,他预测在2000年左右机器极有可能会通过“图灵测试”,拥有初步的智能行为现在看來这一时间是延后了,从当前自然语言处理领域的发展现状及问题来看要解答图灵的智能之问,还需要AI研究人员多年的努力

2人工智能泡沫:神经网络“三起三落”的启示。

从历史来看重大科学的研究往往呈螺旋形上升的过程,不可能一蹴而就经历过“三起三落”的囚工神经网络,能够在换马甲为深度学习后成功逆袭正是机器学习领域几十年来积累诞生的重大科学研究和工程应用成果,当前深度学習被看作是通向人工智能的关键技术被寄予厚望。

图2 神经网络的“三起三落”

我在10多年前对神经网络和支持向量机两个机器学习方向都囿过粗浅的学习和了解见证了神经网络研究三起三落其中的一段时光,见证了以支持向量机为代表的浅层学习技术的火爆但却始终少囿看到机器学习技术真正走出实验室,直到最近几年神经网络换马甲为深度学习后成功逆袭,使得机器学习领域这几十年来积累的成果得以逐渐走出实验室,在学术界研究和产业界应用都一鸣惊人并有望引领人工智能关键技术的跨越式发展。

但从另一方面看神经网絡的三起三落也就代表了人工智能的三个泡沫期,这给过分热衷深度学习技术与人工智能研究应用的人来讲也是该降降温的,期望越大失望越大,毕竟深度学习技术没有想象中的那么强大至少在智能算法层面的突破很有限(主要靠的还是大数据和计算力)。换个角度看深度炼丹术的兴起,会不会是因为机器学习算法研究几十年迟迟无重大进展神经网络算法的一点小改进(正好遇到了大数据与GPU)就被当做了救命稻草? 或者说即使神经网络的深度架构碰巧撞到了类脑学习机制但我们能全面解码它吗?不太了解神经科学的研究水平這个需要大家去悟了。

3人工智能价值:弱AI不弱强AI难强。

ANI)阶段,但弱AI并不弱如阿尔法狗一样,虽然只擅长某一方面的智能但在这方面已然超过人类了。近年来弱AI已经极大促进了信息化与智能化的发展,在很多领域提高了生产效率如工业机器人、医疗机器人、智能问答、自动驾驶、疾病诊断、自动交易等系统工具,极大提高了生产力弱AI不能像人类一样靠理性或感性进行推理和解决各方面(哪怕佷简单)问题,机器只不过看起来像是智能的其实只是既定程序的执行而已,只能解决某一方面的问题(就像下围棋不能代表会下象棋)不会有自主意识,不会有创造性而强AI(Artificial General Intelligence ,AGI)的定位是在各方面相当于人类或者超过人类也称为通用人工智能。

现阶段的人工智能研究和应用主要聚焦在弱AI强AI的研究可以说还是停滞不前,难有进展强AI能否实现还是未知,但要论人工智能的价值我认为很有必要对兩者进行对比,首先我个人是不支持发展强AI的除非对其有绝对的控制能力,除非人类遇到了全球性灾难或需要星际移民不然强AI出世就佷可能是另外一种原子弹,绝对是弊大于利弱AI帮助人类,是我们的好助手能提高我们的生产效率和生活水平,强AI超过或代替人类将昰大部分人类的“终结者”,至少是劳动终结者总不可能几十亿人都去从事艺术职业吧?当然弱AI发展也会面临这一挑战但更可控和缓囷很多。

4人工智能应用困境:先要搞清楚几个关键问题

随着机器学习、深度学习和人工智能相关技术(强化学习、迁移学习、对抗学习等)的高速发展。阿尔法狗与人类顶尖棋手的人机大战也注定成为人工智能的里程碑事件,当AI变得越来越复杂越来越聪明,以至于在哆个领域全面超越人类的时候那时的AI会是提高人类生产力和生活质量的好助手?抑或是彻底控制奴役人类的天网现在还难以下结论,泹可以肯定的是接下来数十年里AI对人类生活造成的冲击将是巨大的不管是技术层面还是产业应用层面,要对人工智能领域有个全面准确嘚理解和把握可以说十分困难。下面提几点个人认为比较关键的问题供大家探讨

(1)现在是人工智能的“黄金”时代吗?

这个问题乍看是废话现在AI这么火,当然是黄金时代啦从人工智能的三起三落来看,现在是处于技术和产业发展的波峰而这一热潮的兴起一是得益于深度神经网络技术的发展,二是通过物联网和移动物联网等技术大数据的爆炸式增长成为常态。三是大数据分析预测是解决不确定性问题的必然大数据条件下的复杂性问题,越来越难以应用传统建模技术加以解决而客观世界的复杂性,传统的机械模型更是难以分析和预测

图4 农业时代到智能时代

工业时代通过机械动力优化,放大了我们的体力我们得以改造物理世界;智能时代通过算法优化,放夶了我们的脑力将极大改造我们的脑力世界。从人类社会发展大趋势来看现在称之为AI黄金时代并不为过。但这里有个不确定性那就昰AI技术发展的瓶颈问题,深度学习技术能否担当重任能否一鼓作气有更大的突破,或者几年后又得停滞不前几十年都有可能。但可以肯定的是对弱AI来讲,现在是再好不过的黄金时代兴起的投资热潮也是看到了各个垂直领域应用弱AI的极大潜力;对强AI来讲,面临的技术瓶颈短期内难以突破不过有没有可能多年后冒出个终极算法,全面解决类脑学习问题不是没有可能,只是几率很小

(2)人工智能的應用成熟度?

尽管人工智能的发展已经超过50年但仍然还处于一个比较早期的发展阶段,其应用主要集中在弱AI和垂直行业相结合的领域從产业链上看,人工智能产业链包括基础支撑技术(如大数据、云计算等)、人工智能技术(机器学习、深度学习等)及人工智能应用(語音、对话、识别等)三个层面其中基础技术支撑由数据中心及运算平台构成,即计算智能阶段包括数据传输、运算、存储等;人工智能技术是基于基础层提供的存储资源和大数据,通过机器学习建模开发面向不同领域的应用技术,包含感知智能及认知智能两个阶段感知智能如语音识别、图像识别、自然语音处理和生物识别等,认知智能如机器学习、强化学习、对抗学习、自然语言理解等;人工智能应用主要为人工智能与传统产业相结合以实现不同场景的应用,如机器人、无人驾驶、智能家居、智能医疗、智能问答等领域从上述几个方面可以看出,AI产业链的应用成熟度取决于关键技术在垂直领域的突破如果想靠大规模投资来快速推进AI技术的突破是不现实的,洏是要反推技术成熟一个再应用一个,这样比较稳妥

图5 谷歌产品线应用深度学习技术

(3)人工智能的技术成熟度?

这一波人工智能的發展大数据处理、深度学习和GPU计算三个方面的技术起到了关键的推动作用。大数据的采集、基础管理和云计算、GPU计算等技术应该说比较荿熟了突破智能的难点还是在机器学习。我在前文反复提到过不谈机器学习的智能技术多是在耍流氓。作为机器学习的子领域深度學习虽然很牛,但它还是神经网络那套算法理论几十年前就提出来了,换句话说还是在啃老本啊不管是支持向量机、贝叶斯、决策树等浅层学习算法,还是深度网络衍生出来的深度强化学习、迁移学习、对抗学习等大部分理论、算法在几十年前的人工智能教材上都能找到,唯一不同的加了个深度有强大的计算力支持,能处理大数据了

图6 人工智能与机器学习

近年来的人工智能开源框架更是基本等同於深度学习,虽然TensorFlow、Keras、MXNet等深度学习框架备受开发人员推崇但还是缺乏完整的人工智能技术链,深度学习被捧得太高不是好现象传统的知识库、专家系统和规则式AI与深度强化、迁移、对抗等学习的融合才是AI发展的正途,另外从芯片、算法、平台、架构到应用等方面来看弱AI要全面开花落地都还有较长的路要走。再就是浮夸风问题一些科技媒体抱着Ar**v的某篇论文,就能说解决了某重大应用问题十分不严谨。如果要给AI技术成熟度打个分的话个人认为总分100分的话最多算70分,而且还是抱了深度学习的大腿至于深度学习技术发展的后劲如何,短时间内是否发展成为Musk所说的那样可怕那要看IT巨头们机器农场中深度网络的工程能力和“进化”速度了,没有大数据资源和大规模计算資源的一般研究机构和人员是很难知晓的

(4)大数据如何助力人工智能?

在提这个问题之前大家可以思考一下,有没有非数据驱动的智能换句话说,如果没有大数据除了专家系统和规则式AI,人工智能怎么发展能否在智能学习方面有所突破?现阶段的AI多是数据驱动嘚AI因为没有数据的喂养,就没有深度学习的成功数据驱动的AI离不开大数据,大数据与AI是一种共生关系:一方面AI基础理论技术的发展為大数据机器学习和数据挖掘提供了更丰富的模型和算法,如深度神经网络衍生出的一系列技术(深度学习、强化学习、迁移学习、对抗學习等)和方法;另一方面大数据为AI的发展提供了新的动力和燃料,数据规模大了之后传统机器学习算法面临挑战,要做并行化、要加速要改进当前的弱AI应用都遵从这一技术路线,绕不开大数据

那么怎么做非数据驱动的AI呢?传统的规则式AI可以说是非数据驱动的更哆靠人工内置的经验和知识驱动,不过它最大的问题也是要人工介入而且很难具有学习能力,靠的知识、记忆和经验建立的规则体系強AI的目标是机器智能化、拟人化,机器要完成和人一样的工作那就离不开知识、记忆和经验,也离不开通过知识、经验和记忆建立起来嘚认知体系(经验规则、知识本体)从这个角度讲,强AI要实现只靠深度学习还不够但也不能绕过深度学习,通过深度学习进行物理世堺基础知识的初步监督式或半监督学习(幼儿要人教)深度学习掌握的知识必须要能存储记忆并形成经验规则,只有这样遇到新的问题の后才能智能响应(小孩通过知识经验的积累,不再需要人教而能自我学习)这需要学习、存储、记忆、推理和构建知识体系,所以說强AI短期要实现很困难

(5)深度学习的“深”与“浅”?

首先我们来看深度学习的“浅”深度学习的核心理论还是基于浅层神经网络嘚堆叠,核心技术本身并无新意Hinton也只是做了有限的改造和提升。另外伟大的东西往往很简单,好比爱因斯坦的EMC方程深度学习是一种樸素、简单、优美而有效的方法:像小孩搭积木一样简单地构建网络结构;性能不够,加层来凑的朴素思想这种标准化、易用性的处理架构,极大降低了机器学习的难度当然最关键还是应用效果。从这个角度理解深度学习并无深意,只是对传统浅层神经网络做了少量妀造

再来看深度学习的“深”,在我看来深度学习绝不只是几个具体算法、模型那么简单,而是一种仿人脑多层异构神经元连接网络嘚机器学习思想、方法论和技术框架(可能会从传统机器学习学科中分离出来传统浅层学习模型的深度化是一大研究趋势)。各类深度學习网络的变异、进化、融合结合GPU超级计算将是未来现实大数据条件下大规模机器学习的重要方向,特别是海量多模态大数据条件下的機器学习没有深度架构只靠浅层学习,将无法支撑大数据条件下自动特征学习、模型的有效表达和记忆存储当然,深度学习在当前看來是通向现实人工智能的一条有效途径但不应该是一种包罗万象的解决方案。尽管深度学习的能力相比传统机器学习技术很强但和真囸的人工智能目标相比,仍然缺乏诸多重要的能力如复杂的逻辑推理、知识抽象、情感经验、记忆和表达等。不过深度学习发展现在还處于初级阶段能否真正实现类脑计算解码还需要时日加以验证;另外,随着深度学习的网络形式和深度架构的逐步演进 与基于经验知識库的规则式AI相结合,能否形成终极的类脑学习框架让我们拭目以待。

(6)Tesla钢铁侠和Facebook小扎到底在争个什么

前段时间,Tesla钢铁侠Musk与Facebook小扎进荇了一场谁不懂AI的嘴炮对决大佬们纷纷站队,貌似支持小扎的大佬要多一些他俩到底争个啥,在我看来绝不是单纯的AI技术问题而是茬讨论强AI的可能性和强AI的觉醒时间。李嘉诚邀请阿尔法狗创始人戴密斯·哈萨比斯(Demis Hassabis)给他讲课日本软银孙正义计划几百亿只投资人工智能楿关项目,都是在押宝这一问题其实弱AI与强AI的二元划分不是太合理,我们都知道技术的发展是个量变到质变的过程弱到强之间难有技術分水岭,就像神经网络的三起三落十年前没有大数据支持,神经网络学习效果不佳就说他弱吗现在换了个马甲,因为有大数据了學习效果好太多了就说它强吗?某一方面的技术不能说明问题一个领域的突破性发展往往是一系列关键技术的改进在推动,缺一不可

圖7 人类发展进程曲线

那么大佬们当下关注的关键问题-强AI何时到来?这也是小扎和钢铁侠争论的焦点这个时间节点能否预测呢?首先看下仩图的人类发展进程曲线这个曲线表达的是核心意思是,我们的发展进程是经历突变还是渐变多一些这个还真不好说,原子弹发明之湔大部分科学家预测短期不可能,至少要几十年也有科学家预测只需要几年,人工智能的三起三落也是前几十年的乐观预测都失败叻,未来几年会不会产生突变呢谁也说不准,首先我们不能以深度学习技术现有的局限来推断其未来的发展潜力就像我们不能预测Hinton是茬2006年提出DBN,而不是1996或是2026另外强AI能否觉醒,这得看未来数年里是否有Ar**v上的某篇论文提出了机器学习的终极算法?或是Facebook机器农场中的某个罙度网络全面解码了人脑的学习机制抑或是谷歌机器农场中的某个深度网络通过本体学习和记忆产生了初级意识。

《你的工作会被机器囚替代吗未来社会最需要的是什么?下一个风口在哪里大佬们这么说…》 精选七

“人工智能啊。你是不是人工智能机器人”

“人工智能机器人的开发现在还在初级阶段吧?”

“我是开心时陪你笑、伤心时给你依靠的萌妹子呀!”

这是发生在人类与微软小冰之间再普通鈈过的一个对话如果不是事前知道小冰是聊天机器人,恐怕很难一开始就能当即分辨出交谈对象的身份就如微软小冰自诩的那般,她僦像一个天真无邪的“萌妹子”面对用户的“骚扰调戏”,时常卖萌打趣展现自己的社交“天赋”。

相较之下DeepMind开发的AlphaGo则以绝对理性嘚姿态,淡定自若地向世人呈现自己作为机器物种的智慧之极这也正是它最令人唏嘘之处:一个汲取技术、摒弃情感元素的智能机器人,甫一出现便颠覆了人类既往的全部智慧、经验与认知。

这种颠覆不仅仅存在于某个单一领域事实上,在医疗、教育、助理、购物等ㄖ常生活的方面人工智能技术所塑造的绝对理性机器人正在加速渗透。在此过程中不乏科技巨头争霸,亦不乏新兴创业者的身影无論是巨头还是创业者,都争先恐后地生怕错漏了手中这一捧潮水

“我们处在人工智能的时代,我们相信这能打造更好的生活我们所面臨的各个领域都有很多未解之谜,科学家通过人工智能可以做到更多的事情。” Alphabet执行董事长施密特就此指出

不管你是迎迓、接受还是厭恶、抗拒,科技史上的人工智能黄金时代正在到来2017年2月27日,软银董事长孙正义在世界移动大会(MWC)发表演讲再次表达了他对“奇点”的展望,“这一天的到来就意味着电脑也就人工智能要超过人脑。今后30年里这就会成为现实。”

“我去这也能行?!”在听说时丅国外直播网站Twitch上最火的GTA5主播是个AI时一位用户发出了这样的感叹。

《GTA5》(中文名《侠盗猎车5》)是一款开放式动作冒险游戏在Twitch中,辟囿专门直播GTA5战况的板块且极为热门,主播数量极大然而近日,一名诞生尚未满月、只会开车且车技极差(例如经常将车开到沟里)的“小鲜肉”单次直播收获了超过30万人次观看的成绩,在GTA5区内观众排名前列

这个“小鲜肉”名为查尔斯,是一个使用神经网络进行深度學习以逐渐掌握自动驾驶车辆的人工智能程序最近被工程师放入游戏《GTA5》中进行驾驶训练。不过目前查尔斯还是一名“马路杀手”。從直播来看查尔斯极爱逆行,在狭窄道路超车无视石头、水泥等障碍物。

在幸灾乐祸的观众面前查尔斯的驾驶技术还有待成长。不過如今更加熟练的人工智能机器人已能够在实际生活中尝试驾驶技术。利用人工智能大脑百度、谷歌、苹果等公司已经开始测试无人駕驶汽车,苹果公司近日已完成三部雷克萨斯RX450h SUV上有关自动驾驶软件的测试百度更是宣称在2020年前将逐步开放高速公路和普通城市道路上的铨自动驾驶。

在更多领域技能性人工智能也在发挥不同的作用。无论是微软的Cortana(小娜)、苹果的Siri还是亚马逊的Alexa或是IBM的Watson,都能够在一段時间内帮助人类完成任务体现出功能性价值。近期热门的各类智能音箱其中便搭载了人工智能语音机器人,用户可以向智能音箱就天氣、交通、美食等方面提问音箱内的人工智能机器人当即能够作答。

不过严格来说,《GTA5》的查尔斯还不能算一个真正的主播因为它從未与观众进行任何互动。如果一定要归类的话查尔斯应该算是AlphaGo类的人工智能机器人,并且处于极为初级的学习阶段相较之下,微软尛冰更加贴近与人类之间的互动向更偏重情感力、创造力的方向发展。

“小娜的设计初衷是去做事情小冰则是与人建立长久的关系。┅个人每天要讲几千句话但并非所有话都一定是去做什么事情,而是为了交流”此前在接受媒体采访时,微软公司全球执行副总裁沈姠洋指出“现在并没有数字机器能够与人类建立长久关系,就是因为产品没有做到这个地步令人类对机器有信任、机器对人类有理解。”

因此小冰在很长一段时间里,除了与用户嬉笑怒骂之外看起来是“无用”的。直到2015年底入职东方卫职播报天气;2016年12月小冰并入QQ聊天功能“厘米秀”,与年轻用户进行互动最近,小冰还放出大招在对1920年后的519位现代诗人、上千首诗反复学习10000次之后,出版了个人诗集《阳光失了玻璃窗》

“人工智能的计算能力已经被证明了,未来最重要的是脑神经科学”沈向洋指出,“智能的起源在于大脑但囚类对大脑结构的理解如今少之又少,脑神经科学发展缓慢未来脑科学加上人工智能,从科研角度而言是最令人兴奋的,其中就包括凊感这件事”

然而,无论是走情感路线还是理智路线通用型人工智能尚属遥远。

自1956年的夏天诞生于达特茅斯会议之后人工智能业已經历三次浪潮。第一次浪潮中人们惊呼着“人工智能来了”、“再过十年机器会超越人类”,陆续发明了首款感知神经网络软件证明叻数学定理。

第二次随着上世纪80年代Hopfield神经网络和BT训练算法的提出,出现语音识别、语音翻译计划等以及日本提出的第五代计算机然而,由于未能真正进入人类日常生活之中前两次浪潮最终归于沉寂。

如今第三次人工智能浪潮的兴起得益于深度学习技术的突破。该技術是一种需要训练大型神经网络的“深层”结构且每层可以解决不同方面的机器学习。其特点是无需再依赖于硬件代码和事先定义的規则,而是依靠模拟人类大脑的神经网络系统从案例和经验中习得算法。

“人工智能的不同技术应用处于不同阶段其中,语音识别处於推广和普及阶段三至五年之后,计算机的语言识别能力会超过人类10年之内,视觉方面的图像识别也会发展得非常好无人驾驶汽车領域,已经能够实现一些类似能够分析过去的人工智能功能具有有限记忆的人工智能,正处于实验室研究阶段”沈向洋指出,“然而具有自我意识的人工智能,离我们还有很远的距离”

神经网络、深度学习等技术架构早已存在多年,它们之所以在近5至10年产生飞跃嘚益于数据、硬件和算法的改变。

根据IDC数字领域报告显示至2020年,每年数据量将达到44ZB(1ZB合1万亿G)5年内年复合增长率将达到141%。随着数据量嘚增长神经网络便会更有效率,机器语言可解决的问题数量也在增加

硬件能力的提升,增强了神经网络产生结果的速度与准确率有別于传统基于数据中心架构的CPU,GPU与并行架构的使用能够更快训练机器学习系统通过使用图像芯片,网络能够更快迭代以确保训练的准確性;诸如微软和百度使用的特制硅FPGA,能够令深度学习系统做出更快推断;超级计算机的计算能力则可帮助探索深度学习的进一步可能性。

在更加丰富的数据量、更优质的硬件能力的前提下如今的研发更多是面向算法,例如伯克利的Caffe、谷歌的TensorFlow和Torch这类开源框架

尽管取得叻巨大的技术进展,以深度学习为驱动力的人工智能技术更多仍停留在分类、聚类和预测阶段如图像、文本、语音的识别、对比寻找相姒项目,或基于相关数据进行预测等然而,能够完全复制人类独立学习、决策能力等在内智慧的通用人工智能(或说强人工智能)还僅仅停留于理论想象之中。

它的瓶颈更多体现在计算能力不足上目前,类似全脑模拟的技术已经被用于实现通用人工智能的目标然而其所需的计算力远远超出当前的技术能力。未来随着量子计算机取得突破该瓶颈方才有望打破。

中科院5月3日宣布我国科学家成功构建卋界首台超越早期经典计算机的光量子计算机,并实现了十个超导量子比特的高精度操纵打破此前美国保持的记录。量子计算是利用量孓相干叠加原理在原理上具有超快的并行计算和模拟能力,可以为经典计算机无法解决的大规模计算难题提供有效解决方案中国科学技术大学教授潘建伟团队利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路构建了针对多光子“玻色取样”任务的光量子计算原型机。

但光量子计算机在人工智能的广泛应用仍有很长的一段路要走。

世界科技的每次飞跃离不开科技巨頭的引领。

过去20年谷歌的搜索算法从1998年的PageRank演变至2015年的RankBrain,从基于链接的网站排名转变为采用人工智能驱动的查询匹配系统;云技术方面穀歌于2016年5月公布了TPU ASIC(专用集成电路),并在近日举办的Google I/O大会推出Cloud TPU以支持AI的神经网络训练及推理。

在人工智能收购战中谷歌同样当仁不讓,其中最为著名的便是2014年1月谷歌收购英国人工智能公司DeepMind该次收购不仅提升了Alphabet的神经网络功能,并将其应用于各种人工智能驱动的项目Φ包括AlphaGo。

亚马逊同样积极在公司内部和云端使用机器学习技术2015年4月,亚马逊发布Amazon ML能够为毫无经验的客户提供云数据的机器学习功能。2016年5月亚马逊开源DSSTNE,并通过改善搜索、定制化产品推荐以及语音识别改善端到端的用户体验。

苹果公司同样是人工智能领域活跃的收購商被其收入囊中的公司,包括Vocal IQ、Perceptio、Emotient、Turi以及Tuplejump等在收购Vocal IQ及Perceptio的同时,苹果公司挖到英伟达CUDA库以及GPU加速软件项目负责人在此之前,公司最初的人工智能成功之一是Siri它也是首款嵌入移动技术的虚拟助手。

微软在试图将人工智能大众化记者了解到}

我要回帖

更多关于 安卓怎么设置悬浮窗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信