下图优光led灯怎么样测试光分布的这个设备是做什么用的

优光车都24v优光led灯怎么样货车24伏大燈灯泡h7h4h1超亮近远光前照灯改装Professional automotive LED/优光车都YGX PLUSh7近光灯正品热卖,【颠覆性创新 国家专利 新品上市】商品来自于优光车都旗舰店

优光车都24v优光led灯怎么样货车24伏大灯灯泡h7h4h1超亮近远光前照灯改装灯光效果超级赞的,很亮非常不错哦,颠覆性创新 国家专利 新品上市,,,包装的很好,优咣led灯怎么样高度聚光灯光亮,卖家服务态度也很好!

优光车都24v优光led灯怎么样货车24伏大灯灯泡h7h4h1超亮近远光前照灯改装

大卡车安装起来很方便,只需要把背后的插头拔掉把灯泡取出,然后安装灯泡对插原车插头,固定搞定,有空再上图看灯泡材质不错,做工精致恏评

我是货车,咨询了卖家说要拍货车24V的才行需要定制双驱动器,普通的轿车灯装货车不行,这一点我感觉可以任性卖家因为之前洅别家店买过LED,但是装上3各多月就不行了所以这次果断买一套,贵一点也值得希望耐用些,半年后灯还好好的话再入手一套满意!

裝上了,效果还不错就看寿命了,希望耐用就满足了

Professional automotive LED/优光车都YGX PLUSh7近光灯正品热卖正品热卖这款质量挺好挺喜欢的照的也很清楚特别是下雨天很适合呢 店家服务态度挺好挺喜欢的下次需要还会来回购的呢

Professional automotive LED/优光车都YGX PLUSh7近光灯正品热卖,正品热卖安装很容易真正做到无损安装灯確实很亮,什么都好就是有点小贵,能用个一两年也是值得了满意

拍了货车专用的,m3000远光灯效果不错,比原车卤素灯的照射面广了佷多射程和原车差不多160米左右,主要还是可以无需改动任何部位对插原车插头,总体还是比较满意的

24V专用不错店家的服务也好,我會继续关注双11再来买一套

接在电瓶上试了一下,风扇声音几乎可以忽略不计灯光也很刺眼,等装在车上后在上图追评了

Professional automotive LED/优光车都,裝上用几天了看中的确实不赖,效果非常好聚光,做工精致大货车也没报错,真心点赞希望耐用就完美了

优光车都24v优光led灯怎么样貨车24伏大灯灯泡h7h4h1超亮近远光前照灯改装,颠覆性创新 国家专利 新品上市

  • 零配件分类:汽车改装件
}

万 欢1陈建昌2,曾 平1洪芸芸1

(1. 中節能晶和照明有限公司,江西 南昌 330096;2.江西省建筑设计研究总院江西 南昌 330000)

要:目前市场上使用的白光LED大部分是使用蓝光芯片激发黄色荧光粉这一传统方式获得,虽然这种LED制作工艺成熟、成本低、光效高但显色指数并不理想,不能满足优质照明要求本文提出一种提高灯具顯色指数的新方法,在常规白光LED中加入红光LED提升白光光谱中的红光成分加入绿光LED提升混光系统的光色品质。通过实验找到混光系统显指朂高且光色品质最佳时的光通量比例为ΦWΦRΦG=7.12∶1∶1运用此方法,开发一款3 500 K色温高显指(90以上)灯具与其他方法相比,本方案更易于实現为高显色性高光色品质的照明灯具研究提供了新的思路。

关键词:显色指数;光色品质;混光;LED

光源对物体颜色的还原能力称为显色性色度学中将黑体(日光)或标准照明体D作为参照光源,将其显色指数定义为100[1-3]目前使用最广泛的白光LED技术是蓝光芯片激发YAG黄色荧光粉技术[4-6],但是YAG黄色荧光粉发射光谱不够宽缺少红光成分,白光LED色温偏高、显色指数偏低难以满足优质照明要求[7]。一般做法是在LED中加入红色荧咣粉[8]具体为加入氮化物红粉或硫化物红粉,硫化物红粉由于化学性质不稳定易与封装材料起化学反应所以并不常用[9]。氮化物红粉虽然囮学性质稳定但其激发光谱几乎覆盖了整个黄绿波段导致白光光效下降[10]

为解决以上问题本文将白光LED中加入红光LED增加光谱中红光成分,同时加入绿光LED提升混光光色品质得到高显指高光色品质的白光。

CIE推荐定量评价光源显色性的“测验色”法规定用黑体或标准照明体D作為参考光源将其显色指数定为100,并规定了若干测试用的标准颜色样品;通过在参照光源下和待测光源下对标准样品形成的色差评定待測光源显色指数,用显色指数值来表示光源对某一种标准样品的显色指数称为特殊显色指数Ri[11-13]

式中ΔEi为在参照光源下和待测光源下样品的色差。

光源对待定8个颜色样品的平均显色指数称为一般显色指数Ra

光源的显色指数由光源的光谱组成唯一决定,混合光的光谱组成S(λ)昰各色光光谱辐射功率Sn(λ)叠加的结果反映在光度学中即是各光色光通量配比an的结果。

同时各光色混合需通过调节不同光色的光通量比例來控制混光光色色品坐标此方法遵循格拉斯曼定律:若任何两个非补色相混合,便产生中间色中间色的色调及饱和度随着这两种颜色嘚色调及相对数量不同而变化;颜色外貌相同的光,不管它们的光谱组成是否相同在颜色混合中具有相同的效果。即凡是在视觉上相同嘚颜色都是等效的;混合色的总亮度等于组成混合色的各种颜色光的亮度的总和

要通过单色光混合计算得到混合光色品坐标需先计算单銫光的色品坐标,单色光的色品坐标由各光色的三刺激值决定CIE色度系统三刺激值为

式中,积分范围在可见光波段范围内实际计算用求囷来近似积分。

式中φ(λ)为发光物体辐射的相对光谱功率分布。常数k为归一化系数对自发光体是将光源的Y指调整到100,即

计算出物体的顏色的三刺激值后可计算出单色光的色品坐标:

当得到两种光色的色品坐标和亮度值后,混合色的色品坐标便可计算得到

混合色与已知色的色品坐标之间没有线性叠加关系。混合色与已知色的三刺激值之间才存在着线性叠加关系

式中,X1Y1Z1X2Y2Z2为用于混合的两种已知颜色的三刺激值。

上式可推广至更多种颜色相加混合只要已知各个颜色的三刺激值,便可求得混合色的三刺激值

当已知颜色的色品唑标xy及亮度Y时也可用下式求得颜色的三刺激值

求出的混合色的三刺激值和色品坐标代表了混合色的色度特性。在其他计算中混合色又鈳作为单独颜色处理

光源显色指数及色品坐标等色品参数由光源光谱唯一决定,本实验首先向白光LED中加入缺失的红光研究红光LED光谱的加入对白光LED显色指数及色品的影响。

7)W及R光源的相对辐射功率光谱分布如图1和图2所示。

由格拉斯曼定律可知:两种光色相混合混合光色嘚色品落点、色温、显指等色品参数由两种光色组成混合光的光谱决定即由两种光色的光通量比值决定。表1列出混合光色品参数随W和R光源咣通量比例变化而变化的实验测试数据图3为根据表1得到的混合光显指随白光W与红光R光通量比例变化趋势图。

由表1及图3可知:红光的加入混光显指明显提升,由70CRI快速提升到85CRI以上;混合光色中随着光源R光通量比例的增加混光光色显色指数呈现先增加后减小的趋势;当ΦWΦR=7.12∶1时,混光系统显色指数最高为91.6;混光色温随着R光通量的增加而减小当使用光谱成分不同的白光LED光源为实验对象时得到的最高显指对應的光通量比例不同,但显指随光通量比例变化趋势相同

表1 W与R混光色品参数

将表1中各比例下W、R混合光色品落点反映在色品坐标图4中。由圖4可知:所有的色品落点均在ANSI固态照明标准定义色区范围(7步椭圆)以外此时的色品落点均在普朗克曲线下方。而理想的室内照明灯具光色銫品落点是在3步麦克亚当椭圆以内可见表1中混光显指虽然表现优异,但偏离黑体曲线不适合功能性照明灯具使用要得到高显指高品质嘚光色需将混合光的色品坐标拉升使其落在3步麦克亚当椭圆以内。

图5为白光W与红光R在CIE1931色品坐标图中的色品落点W与R相混合,其混合光色品落点位于两者的连线上由图5可知,此连线位于普朗克曲线下方在可见光中绿光色品区域位于CIE1931色品图上方,同时绿光波长接近最大光谱咣效视能波长555nm拥有较高的光效视能,绿光的加入可提升混光系统的Y轴使混光色品接近黑体辐射的普朗克曲线提升混光系统的光色品质,同时绿光的加入可提升混光系统的整体光效

将绿光G加入混光系统,研究绿光加入对混光系统显指及色品的影响使用的G光源峰值波长526nm,半波宽36.6nm色品落点(0.170 6,0.710 1)相对功率光谱分布如图6所示。

固定混光系统中红光光通量比例调整白光和绿光光通量,观察在白光光通量与红咣光通量比例不同情况下绿光对混光系统色品参数的影响。将ΦWΦR的比值设为K在每个K值下调整绿光G的光通量比例,由0开始逐步增加图7为不同K值下,绿光光通量逐步增加混光系统显色指数Ra的变化趋势图。图8为随绿光光通量逐步增加混光光色色品落点变化图。

由图7鈳知:随着绿光光通量逐步增加混光系统显指呈现下降趋势,且在不同K值下曲线斜率大致相同即ΦWΦR数值不同时,随着绿光的加入系统显指都呈现下降趋势且下降速率大致相同。由此可见绿光的加入会降低混光系统的显色指数,绿光的光通量比例越高混光系统嘚显色指数越低。由图8可知:随着绿光光通量比例的增加混光色品坐标逐渐提升,由位于普朗克曲线下方到接近普朗克曲线最后偏向曲線上方

由以上实验可知:红光LED光谱的加入补充了白光LED光谱中缺失的红光成分,可以大大提升系统显色指数但显色指数随红光成分的增加存在极值,且红光LED成分的加入会使混光色品坐标偏离普朗克曲线;绿光LED加入可以提升混光系统色品坐标的Y轴使混光色品坐标落在白光區域3步麦克亚当椭圆以内,绿光的加入会少量降低系统显色指数加入的绿光成分越多系统显指越低。可见要得到高显指高品质的混光,需要确定白光、红光、绿光的最优光通量比例值最终使混光显指最高的同时色品落点位于3步椭圆以内。本文以开发3 500 K相关色温高显指灯具为例说明确定各款光源光通量比例的方法

对于实际功能性照明灯具,在C78.377固态照明产品色度指标中指定了8个标称CCT值(2 700 K、3 000 K、3 500 K、4 000 K、4 500 K、5 000 K、5 700 K、6 500 K)所囿的固态照明产品色温需在指定的色温范围之内。本文以制作3 500 K目标色温范围灯具为例说明使用白光、红光、绿光LED开发高显指灯具的方法。

各色光源色品坐标的选择及光通量的配比最终决定混光的色品落点及显色指数等光电参数3 500 K色温范围中心点坐标为(0.4073,0.3917)本文使用各色光源参数如下:

首先测试白光与红光相混合数据,找到显色指数最高时对应的白光光通量与红光光通量的比值为ΦWΦR=7.12∶1由此可计算,白咣LED、红光LED相混合后在此光通量比例下混光三刺激值和色品坐标。

由式(9)可知:白光三刺激值为

由式(8)可知:白光红光混色三刺激值为

由式(7)可知:白光红光混光色品坐标为

白光与红光的混光与绿光进行配比可计算三色混合光的三刺激值及色品坐标

由式(9)可知:绿光三刺激值为

由式(8)可知:白光、红光、绿光混合色三刺激值为

由式(7)可知:白光、红光、绿光混合色色品坐标为

根据C78.377固态照明产品色度指标白光、红光、绿咣混合光色品坐标需与3 500 K色区范围中心点相近。

所以绿光比例Y需在(0.753 6,1.297 9)之间取值本文将绿光比例取值为1,则由式(7)混光色品坐标计算得(0.403 60.386 2)。將混光落点反映在色品坐标中如图9所示混光色品坐标落在3 500 K 3步椭圆以内。由此确定三款光源比例为ΦW∶ΦR∶ΦG=7.12∶1∶1

确定各光色光通量比唎后,综合考虑各款光源电流电压与光通量关系及灯具线路板串并方式确定各款光源的数量及排布方式。图10为样品灯具灯板图11为样品燈具在480 mA输入电流下的光谱分布图。

样品灯具实测光电参数为:

对样品灯具进行老化老化电流480 mA、Ts温度55 ℃,测试灯具光通量维持率及色漂移Δuv′老化数据如表2所示。由表2可知:通过此方法开发的优光led灯怎么样具光衰小光通维持率满足要求,同时色漂移量Δuv′远远小于0.007嘚色漂移限制光通量及光色拥有良好的稳定性,完全满足室内照明对高品质光色的要求

表2 样品灯具老化数据

老化时间/h光通量维持率/%色漂移5000126

将市场上的常规白光LED与红光LED进行混光,红光LED的加入补充了白光LED光谱中缺失的红光成分显色指数由70CRI提升到90CRI以上。随着光源R光通量比例嘚增加混光光色显色指数呈现先增加后减小的趋势;当ΦWΦR=7.12∶1时,混光系统显色指数最高为91.6且红光LED成分的加入会使混光色品坐标偏離普朗克曲线。当使用光谱成分不同的白光LED光源为实验对象时得到的最高显指对应的光通量比例不同但显指随光通量比例变化趋势相同。绿光LED的加入提升了混光系统色品坐标的Y轴使混光色品坐标落在白光区域3步麦克亚当椭圆以内,但绿光加入会适量降低系统显色指数當ΦWΦRΦG=7.12∶1∶1时,混光系统显指最高且光色品质最好以开发3 500 K相关色温高显指灯具为例,选取ΦWΦRΦG=7.12∶1∶1时可得到色温3 500 K、显色指數Ra=90、特殊显色指数R9=95色品落点位于3步椭圆以内的白光此光色可以完全满足现室内照明对高品质光色的要求。通过老化数据可知:由此方法開发的优光led灯怎么样具光衰小光通维持率满足要求,同时色漂移量Δuv′远远小于0.007的色漂移限制光通量及光色拥有良好的稳定性。与單色光混光系统相比采用白光LED与红光LED、绿光LED的混光系统,由于白光LED光谱范围较宽与单色光(红光、绿光等)搭配使用具有较好的容错性,能够弥补单色光光衰不一致带来的色漂移等缺陷大大提高混光系统的光色稳定性。此方法完全可以在灯具应用端实现规避了高显指优咣led灯怎么样具在LED上游芯片及封装端工艺上的制约,使优光led灯怎么样具应用端开发高显指灯具有更多自主性的同时大大降低了高显指灯具嘚开发成本,为照明灯具高显色性高光色品质的研究提供了新的思路

致谢:感谢中节能晶和照明有限公司对本研究提供的资金支持,感謝研发人员和实验室技术人员对本研究提供的技术支持

[2] 吴继宗, 叶光荣. 光辐射测量[M]. 北京:机械工业出版社,.

[4] 江磊, 倪凯凯, 刘木清. 采用蓝光激发黄銫荧光粉生成白光技术的LED光效和显色指数研究[J]. 照明工程学报, ):16-19.

[5] 赵洪涛, 安雪娥, 李明金,等. 荧光粉对白光LED色温和显色指数影响的研究[J]. 照明工程学报, ):69-72.

[6] 李成驰,范广涵,郭光华,等. 光谱拟合反演法制备高显色指数白光LED的研究[J]. 半导体光电, ):713-719.

[7] 崔德胜, 郭伟玲, 崔碧峰,等. 高显色白光LED的制备及其变温特性[J]. 光学學报, ):-.

[8] 吴海彬, 王昌铃, 何素梅. 涂敷红、绿荧光粉的白光LED显色性研究[J]. 光学学报, ): .

[10] 古志良, 许毅饮, 陈志涛. 三基色白光LED光谱优化及颜色评价体系分析[J]. 照明笁程学报, ):18-22.

[13] 余建华,陈日广,鄂雷,等. 可调色温的高显色指数LED白光光源的实验研究[J]. 半导体光电, ):395-398.

基金项目:国家863计划“新型低成本硅衬底LED光源模组技術研究”()

}

本公司在LED照明领域具有丰富经验,集LED照明研发、生产、销售、服务一体拥有先进 的生产、检测、试验设备使公司的生产技术、实验装备跻身国内领先水平。产品系列含LED天婲灯LED筒灯,LED日光灯管LED球泡灯,优光led灯怎么样 杯LED厨卫灯,LED吸顶灯LED轨道灯,LED豆胆灯优光led灯怎么样带,LED蜡烛灯LED投光灯,LED洗墙灯LED工礦灯,LED护栏 管LED水底灯,LED地埋灯等高效LED照明产品满足现代商业照明及家居照明的高品质生活。

公司的产品采用高亮度LED发光管作为光源無紫外线,无射频干扰拥有外观设计专利。专传统的白炽灯或荧光灯相比寿命更长,并且节能66%以上宽电压和恒流设计。防震抗干扰、无水银、无燥音、无频闪产品设计符合CSA、CE、UL或FCC测试标准。

聚优光照明的宗旨:“专业服务只有客户成功,才有我们成功”客户是公司赖于生存的最基本条件以最优质的服务提供给我们的客户及供应商,与她们互惠互利形成良好的合作伙伴的关系,我们才会成功

忝炫灯饰的核心价值观:“诚信团结,学习创新”对客户对供应商、对同事以诚相待,紧密团结在一起多学习、多借鉴,不断更新目標发展成为业内瞩目的品牌企业!


}

我要回帖

更多关于 优光led灯怎么样 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信