施耐德控制器伺服驱动器电源模块有电通信模块没电

中国工控|25个西门子,施耐德和松下伺服驱动器故障维修实战集锦
技术文章来源提供
一、西门子直流伺服驱动系统故障维修10例
例1.进线快速熔断器熔断的故障维修
故障现象:一台配套SIEMENS 8MC的卧式加工中心,在电网突然断电后开机,系统无法起动。
分析与处理过程:经检查,该机床X轴伺服驱动器的进线快速熔断器已经熔断。该机床的进给系统采用的是SIEMENS 6RA系列直流伺服驱动,对照驱动器检查伺服电动机和驱动装置,未发现任何元器件损坏和短路现象。
检查机床机械部分工作亦正常,直接更换熔断器后,起动机床,恢复正常工作。分析原因是由于电网突然断电引起的偶发性故障。
例2.SIEMENS 8MC测量系统故障的维修
故障现象:一台配套SIEMENS 8MC的卧式加工中心,当X轴运动到某一位置时,液压电动机自动断开,且出现报警提示:Y轴测量系统故障。断电再通电,机床可以恢复正常工作,但X轴运动到某一位置附近,均可能出现同一故障。
分析与处理过程:该机床为进口卧式加工中心,配套SIEMENS 8MC数控系统,SIEMENS 6RA系列直流伺服驱动。由于X轴移动时出现Y轴报警,为了验证系统的正确性,拨下了X轴测量反馈电缆试验,系统出现X轴测量系统故障报警,因此,可以排除系统误报警的原因。
检查X轴在出现报警的位置及附近,发现它对Y轴测量系统(光栅)并无干涉与影响,且仅移动Y轴亦无报 警,Y轴工作正常。再检查Y轴电动机电缆插头、光栅读数头和光栅尺状况,均未发现异常现象。
考虑到该设备属大型加工中心,电缆较多,电柜与机床之间的电缆长度较长,且所有电缆均固定在电缆架上,随机床来回移动。根据上述分析,初步判断由于电缆的弯曲,导致局部断线的可能性较大。
维修时有意将X轴运动到出现故障点位置,人为移动电缆线,仔细测量Y轴上每一根反馈信号线的连接情况,最终发现其中一根信号线在电缆不断移动的过程中,偶尔出现开路现象;利用电缆内的备用线替代断线后,机床恢复正常。
例3~例4.驱动器故障引起跟随误差超差报警维修
故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后移动机床的Z轴,系统发生“ERR22跟随误差超差”报警。
分析与处理过程:数控机床发生跟随误差超过报警,其实质是实际机床不能到达指令的位置。引起这一故障的原因通常是伺服系统故障或机床机械传动系统的故障。
由于机床伺服进给系统为全闭环结构,无法通过脱开电动机与机械部分的连接进行试验。为了确认故障部位,维修时首先在机床断电、松开夹紧机构的情况下,手动转动Z轴丝杠,未发现机械传动系统的异常,初步判定故障是由伺服系统或数控装置不良引起的。
为了进一步确定故障部位,维修时在系统接通的情况下,利用手轮少量移动Z轴(移动距离应控制在系统设定的最大允许跟随误差以内,防止出现跟随误差报警),测量Z轴直流驱动器的速度给定电压,经检查发现速度给定有电压输入,其值大小与手轮移动的距离、方向有关。由此可以确认数控装置工作正常,故障是由于伺服驱动器的不良引起的。
检查驱动器发现,驱动器本身状态指示灯无报警,基本上可以排除驱动器主回路的故障。考虑到该机床X、Z轴驱动器型号相同,通过逐一交换驱动器的控制板确认故障部位在6RA26**直流驱动器的A2板。
根据SIEMENS 6RA26**系列直流伺服驱动器的原理图,逐一检查、测量各级信号,最后确认故障原因是由于A2板上的集成电压比较器N7(型号:LM348)不良引起的:更换后,机床恢复正常。
例4.故障现象:一台配套SIEMENS 850系统、6RA26**系列直流伺服驱动系统的进口卧式加工中心,在开机后,手动移动X轴,机床X轴工作台不运动,CNC出现X跟随误差超差报警。
分析与处理过程:由于机床其他坐标轴工作正常,X轴驱动器无报警,全部状态指示灯指示无故障,为了确定故障部位,考虑到6RA26**系列直流伺服驱动器的速度/电流调节板A2相同,维修时将X轴驱动器的A2板与Y轴驱动器的A2板进行了对调试验。经试验发现,X轴可以正常工作,但Y轴出现跟随超差报警。
根据这一现象,可以得出X轴驱动器的速度/电流调节器板不良的结论。根据SIEMENS 6RA26**系列直流伺服驱动器原理图,测量检查发现,当少量移动X轴时驱动器的速度给定输入端57与69端子间有模拟量输入,测量驱动器检测端B1,速度模拟量电压正确,但速度比例调节器N4(LM301)的6脚输出始终为0V。
对照原理图逐一检查速度调节器LM301的反馈电阻R25、R27、R21,偏移调节电阻R10、R12、R13、R15、R14、R12,以及LM301的输入保护二极管V1、V2,给定滤波环节R1、C1、R20、V14,速度反馈滤波环节的R27、R28、R8、R3、C5、R4等外围元器件,确认全部元器件均无故障。
因此,确认故障原因是由于LM301集成运放不良引起的;更换LM301后,机床恢复正常工作,故障排除。
例5.CNC故障引起跟随误差超差报警维修
故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后移动机床的Z轴,系统发生“ERR22跟随误差超差”报警。
分析与处理过程:故障分析过程同前例,但在本例中,当利用手轮少量移动Z轴,测量Z轴直流驱动器的速度给定电压始终为0,因此可以初步判定故障在数控装置或数控与驱动器的连接电缆上。
检查数控装置与驱动器的电缆连接正常,确认故障引起的原因在数控装置。打开数控装置检查,发现Z轴的速度给定输出D/A转换器的数字输入正确,但无模拟量输出,从而确认故障是由于D/A转换器不良引起的。
更换Z轴的速度给定输出的12位D/A转换器DAC0800后,机床恢复
例6.故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后发生“ERR21,Y轴测量系统错误”报警。
分析与处理过程:数控系统发生测量系统报警的原因一般有如下几种:
1)数控装置的位置反馈信号接口电路不良。
2)数控装置与位置检测元器件的连接电缆不良。
3)位置测量系统本身不良。
由于本机床伺服驱动系统采用的是全闭环结构,检测系统使用的是HEIDENHAIN公司的光栅。为了判定故障部位,维修时首先将数控装置输出的X、Y轴速度给定,将驱动使能以及X、Y轴的位置反馈进行了对调,使数控的X轴输出控制Y轴,Y轴输出控制X轴。经对调后,操作数控系统,手动移动Y轴,机床X轴产生运动,且工作正常,证明数控装置的位置反馈信号接口电路无故障。
但操作数控系统,手动移动X轴,机床Y轴不运动,同时数控显示“ERR21,X轴测量系统错误”报警。由此确认,报警是由位置测量系统不良引起的,与数控装置的接口电路无关。检查测量系统电缆连接正确、可靠,排除了电缆连接的问题。
利用示波器检查位置测量系统的前置放大器EXE601/5-F的Ual和Ua2、*Ua1和Ua2输出波形,发现Ua1相无输出。进一步检查光栅输出(前置放大器EXE601/5-F的输入)信号波形,发现Ie1无信号输入。检查本机床光栅安装正确,确认故障是由于光栅不良引起的:更换光栅LS903后,机床恢复正常工作。
例7.故障现象:某配套SIEMENS PRIMOS系统、6RA26**系列直流伺服驱动系统的数控滚齿机,开机后发生“ERR21,X轴测量系统错误”报警。
分析与处理过程:故障分析过程同前例,但在本例中,利用示波器检查位置测量系统的前置放大器EXE601/5-F的Ual和Ua2、*Ual和*Ua2输出波形,发现同样Ual无输出。进一步检查光栅输出(前置放大器EXE601/5-F的输入)信号波形,发现Ie1,信号输入正确,确认故障是由于前置放大器EXE601/5-F不良引起的。
根据EXE601/5-F的原理(详见后述)逐级测量前置放大器EXE601/5-F的信号,发现其中的一只LM339集成电压比较器不良;更换后,机床恢复正常工作。
例8.驱动器未准备好的故障维修
故障现象:一台配套SIEMENS 850系统、6RA26**系列直流伺服驱动系统的卧式加工中心,在加工过程中突然停机,开机后面板上的“驱动故障”指示灯亮,机床无法正常起动。
分析与处理过程:根据面板上的“驱动故障”指示灯亮的现象,结合机床电气原理图与系统PLC程序分析,确认机床的故障原因为Y轴驱动器未准备好。
检查电柜内驱动器,测量6RA26**驱动器主回路电源输入,只有V相有电压,进一步按机床电气原理图对照检查,发现6RA26**驱动器进线快速熔断器的U、W相熔断。用万用表测量驱动器主回路进线端1U、1W,确认驱动器主回路内部存在短路。
由于6RA26**交流驱动器主回路进线直接与晶闸管相连,因此可以确认故障原因是由于晶闸管损坏引起的。
逐一测量主回路晶闸管V1-V6,确认V1、V2不良(己短路);更换同规格备件后,机床恢复正常。
由于驱动器其他部分均无故障,换上晶闸管模块后,机床恢复正常工作,分析原因可能是瞬间电压波动或负载波动引起的偶然故障。
例9.外部故障引起电动机不转的故障维修
故障现象:一台配套SIEMENS 6M系统的进口立式加工中心,在换刀过程中发现刀库不能正常旋转。
分析与处理过程:通过机床电气原理图分析,该机床的刀库回转控制采用的是6RA**系列直流伺服驱 动,刀库转速是由机床生产厂家制造的“刀库给定值转换/定位控制”板进行控制的。
现场分析、观察刀库回转动作,发现刀库回转时,PLC的转动信号已输入,刀库机械插销已经拔出,但6RA26**驱动器的转换给定模拟量未输入。由于该模拟量的输出来自“刀库给定值转换/定位控制”板,由机床生产厂家提供的“刀库给定值转换/定位控制”板原理图逐级测量,最终发现该板上的模拟开关(型号DG201)已损坏,更换同型号备件后,机床恢复正常工作。
例10.开机电动机即高速旋转的故障维修
故障现象:一台与例268同型号的机床,在开机调试时,出现手动按下刀库回转按钮后,刀库即高速旋转,导致机床报警。
分析与处理过程:根据故障现象,可以初步确定故障是由于刀库直流驱动器测速反馈极性不正确或测速反馈线脱落引起的速度环正反馈或开环。测量确认该伺服电动机测速反馈线已连接,但极性不正确;交换测速反馈极性后,刀库动作恢复正常。
二、施耐德伺服驱动器常见故障分析及解决方案
1、伺服电机在有脉冲输出时不运转,如何处理?
① 监视控制器的脉冲输出当前值以及脉冲输出灯是否闪烁,确认指令脉冲已经执行并已经正常输出脉冲;
② 检查控制器到驱动器的控制电缆,动力电缆,编码器电缆是否配线错误,破损或者接触不良;
③ 检查带制动器的伺服电机其制动器是否已经打开;
④ 监视伺服驱动器的面板确认脉冲指令是否输入;
⑤ Run运行指令正常;
⑥ 控制模式务必选择位置控制模式;
⑦ 伺服驱动器设置的输入脉冲类型和指令脉冲的设置是否一致;
⑧ 确保正转侧驱动禁止,反转侧驱动禁止信号以及偏差计数器复位信号没有被输入,脱开负载并且空载运行正常,检查机械系统。
2、伺服电机高速旋转时出现电机偏差计数器溢出错误,如何处理?
① 高速旋转时发生电机偏差计数器溢出错误;
检查电机动力电缆和编码器电缆的配线是否正确,电缆是否有破损。
② 输入较长指令脉冲时发生电机偏差计数器溢出错误;
a.增益设置太大,重新手动调整增益或使用自动调整增益功能;
b.延长加减速时间;
c.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负荷能力。
③ 运行过程中发生电机偏差计数器溢出错误。
a.增大偏差计数器溢出水平设定值;
b.减慢旋转速度;
c.延长加减速时间;
d.负载过重,需要重新选定更大容量的电机或减轻负载,加装减速机等传动机构提高负载能力。
3、伺服电机没有带负载报过载,如何处理?
① 如果是伺服Run(运行)信号一接入并且没有发脉冲的情况下发生:
a.检查伺服电机动力电缆配线,检查是否有接触不良或电缆破损;
b.如果是带制动器的伺服电机则务必将制动器打开;
c.速度回路增益是否设置过大;
d.速度回路的积分时间常数是否设置过小。
② 如果伺服只是在运行过程中发生:
a.位置回路增益是否设置过大;
b.定位完成幅值是否设置过小;
c.检查伺服电机轴上没有堵转,并重新调整机械。
4、伺服电机运行时出现异常声音或抖动现象,如何处理?
① 伺服配线:
a.使用标准动力电缆,编码器电缆,控制电缆,电缆有无破损;
b.检查控制线附近是否存在干扰源,是否与附近的大电流动力电缆互相平行或相隔太近;
c.检查接地端子电位是否有发生变动,切实保证接地良好。
② 伺服参数:
a.伺服增益设置太大,建议用手动或自动方式重新调整伺服参数;
b.确认速度反馈滤波器时间常数的设置,初始值为0,可尝试增大设置值;
c.电子齿轮比设置太大,建议恢复到出厂设置;
d.伺服系统和机械系统的共振,尝试调整陷波滤波器频率以及幅值。
③ 机械系统:
a.连接电机轴和设备系统的联轴器发生偏移,安装螺钉未拧紧;
b.滑轮或齿轮的咬合不良也会导致负载转矩变动,尝试空载运行,如果空载运行时正常则检查机械系统的结合部分是否有异常;
c.确认负载惯量,力矩以及转速是否过大,尝试空载运行,如果空载运行正常,则减轻负载或更换更大容量的驱动器和电机。
5、施耐德伺服电机做位置控制定位不准,如何处理?
① 首先确认控制器实际发出的脉冲当前值是否和预想的一致,如不一致则检查并修正程序;
② 监视伺服驱动器接收到的脉冲指令个数是否和控制器发出的一致,如不一致则检查控制线电缆;
三 、松下伺服驱动器维修常见问题及解决方法
1、松下数字式交流伺服系统MHMA 2KW,试机时一上电,电机就振动并有很大的噪声,然后驱动器出现16号报警,该怎么解决?  
这种现象一般是由于驱动器的增益设置过高,产生了自激震荡。请调整参数No.10、No.11、No.12,适当降低系统增益。(请参考《使用说明书》中关于增益调整的内容)
2、松下交流伺服驱动器上电就出现22号报警,为什么?
22号报警是编码器故障报警,产生的原因一般有:
A.编码器接线有问题:断线、短路、接错等等,请仔细查对;
B.电机上的编码器有问题:错位、损坏等,请送修。
3、松下伺服电机在很低的速度运行时,时快时慢,象爬行一样,怎么办?
伺服电机出现低速爬行现象一般是由于系统增益太低引起的,请调整参数No.10、No.11、No.12,适当调整系统增益,或运行驱动器自动增益调整功能。(请参考《使用说明书》中关于增益调整的内容)
4、松下交流伺服系统在位置控制方式下,控制系统输出的是脉冲和方向信号,但不管是正转指令还是反转指令,电机只朝一个方向转,为什么?
松下交流伺服系统在位置控制方式下,可以接收三种控制信号:脉冲/方向、正/反脉冲、A/B正交脉冲。驱动器的出厂设置为A/B正交脉冲(No42为0),请将No42改为3(脉冲/方向信号)。
5、松下交流伺服系统的使用中,能否用伺服-ON作为控制电机脱机的信号,以便直接转动电机轴?
尽管在SRV-ON信号断开时电机能够脱机(处于自由状态),但不要用它来启动或停止电机,频繁使用它开关电机可能会损坏驱动器。如果需要实现脱机功能时,可以采用控制方式的切换来实现:假设伺服系统需要位置控制,可以将控制方式选择参数No02设置为4,即第一方式为位置控制,第二方式为转矩控制。然后用C-MODE来切换控制方式:在进行位置控制时,使信号C-MODE打开,使驱动器工作在第一方式(即位置控制)下;在需要脱机时,使信号C- MODE闭合,使驱动器工作在第二方式(即转矩控制)下,由于转矩指令输入TRQR未接线,因此电机输出转矩为零,从而实现脱机。
6、在我们开发的数控铣床中使用的松下交流伺服工作在模拟控制方式下,位置信号由驱动器的脉冲输出反馈到计算机处理,在装机后调试时,发出运动指令,电机就飞车,什么原因?
这种现象是由于驱动器脉冲输出反馈到计算机的A/B正交信号相序错误、形成正反馈而造成,可以采用以下方法处理:
A.修改采样程序或算法;
B.将驱动器脉冲输出信号的A+和A-(或者B+和B-)对调,以改变相序;
C.修改驱动器参数No45,改变其脉冲输出信号的相序。
7、在我们研制的一台检测设备中,发现松下交流伺服系统对我们的检测装置有一些干扰,一般应采取什么方法来消除?
由于交流伺服驱动器采用了逆变器原理,所以它在控制、检测系统中是一个较为突出的干扰源,为了减弱或消除伺服驱动器对其它电子设备的干扰,一般可以采用以下办法:
A.驱动器和电机的接地端应可靠地接地;
B.驱动器的电源输入端加隔离变压器和滤波器;
C.所有控制信号和检测信号线使用屏蔽线。
干扰问题在电子技术中是一个很棘手的难题,没有固定的方法可以完全有效地排除它,通常凭经验和试验来寻找抗干扰的措施。
8、伺服电机为什么不会丢步?
伺服电机驱动器接收电机编码器的反馈信号,并和指令脉冲进行比较,从而构成了一个位置的半闭环控制。所以伺服电机不会出现丢步现象,每一个指令脉冲都可以得到可靠响应。
9、如何考虑松下伺服的供电电源问题?
目前,几乎所有日本产交流伺服电机都是三相200V供电,国内电源标准不同,所以必须按以下方法解决:
A.对于750W以下的交流伺服,一般情况下可直接将单相220V接入驱动器的L1,L3端子;
B.对于其它型号电机,建议使用三相变压器将三相380V 变为三相200V,接入驱动器的 L1,L2,L3。
10、对伺服电机进行机械安装时,应特别注意什么?
由于每台伺服电机后端部都安装有旋转编码器,它是一个十分易碎的精密光学器件,过大的冲击力肯定会使其损坏。
新浪微博:搜索关注工控老马
中心年前的所有课程已经满额,感谢信任和口碑的传承[微笑]。成为中心学员,加入工控钢铁部队是荣誉!下期《电气自动化工程师精品培训班》:最新开课时间:日全天班开课(全天授课)(为期40天)(2018年全新课程 速速报名;学员需提前报名。招生对象:(在校大学生、社会人员)。报名后提前1星期报到、安装全套组态及编程软件系统、仿真学习软件、领取中心培训教材、填写认证表格等。2018年中心与江苏政府开展定向培养智能自动化人才计划,推荐相关技术工作,并享受在我黑龙江省科学院自动化研究所科室实习的岗位工作等。黑龙江省科学院自动化研究所培训中心欢迎您!3
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
今日搜狐热点施耐德智能照明控制8路输出模块
施耐德智能照明控制8路输出模块
香港施耐德智能照明&香港施耐德智能照明控&施耐德智能照明控制&
最小采购量:
浏览人数:
产品型号:
智能照明控制8路输出模块
香港施耐德智能照明&香港施耐德智能照明控&施耐德智能照明控制&
主营产品:
高分断空气开关 DZ30-32D(D 香港施耐德/施耐德 香港施耐德MT/ 香港施耐德框架断路器
施耐德智能照明控制8路输出模块
香港施耐德智能照明&香港施耐德智能照明控&施耐德智能照明控制&
智能照明控制8路输出模块
2. 施耐德智能照明模块是基于CAN总线型式的智能照明控制系统。主要用于对照明系统的控制,也可用于对开关量设备的驱动或与第三方智能设备联动。
系统所有的单元器件(除电源外)均有全球唯一物理地址与唯一总线地址,通过控制总线将所有模块组成网络,由配置软件对设备进行设置及功能定义。当有信号输入时,输入单元将信号通过CAN-BUS总线与相对应的控制模块进行点对点通信,由输出单元做出相应执行动作。
单元名称;输出单元,输入单元,系统单元
模块内容;继电器输出模块,调光控制模块,窗帘控制模块;智能面板,输入模块,照度变送器,人体感应模块;电源模块,智能网关,通信转换模块,场景定时模块,CANHUB模块。
输出单元选型;输出单元是智能照明控制系统中接收总线信号,对终端设备进行控制的驱动器。
继电器输出模块;继电器输出模块,用于对设备进行开关量控制,如;灯光回路,插座或其它用电设备电源等。
4. 模块每通道可接不同相线,使用过零检测时每个模块接同一相线。
5. 每回路可匹配断路器,也可根据负载大小情况多路共用断路器。
6. 回路负载超过额定值,需要置相应交流接触器。
8路继电器输出模块;功能和特点,继电器过零切换,继电器开关次数统计,继电器闭合时间累加,模块自检及看门狗功能,延时启动功能。
详细参数;1.工作电压;24v±10% 。工作电流;启动电流;30MA,待机电流;30MA,最大工作电流;160MA。工作环境;0度-45度,湿度;0-95%。通信接口;CAN总线,4位5.08插拔端子,负载接口;继电器输出,4剩2位7.62接线端子,接线容量4个方。额定电流;16A
20A单路。瞬间输出电流;80A(单路)。安装方式;35mm导轨安装(10模数)
施耐德智能照明控制8路输出模块
您是不是想找:
更多分享:
按排行字母分类:施耐德Unity的冗余型电源模块简介
添加时间:
来源: | 阅读量:270
提示: 冗余型电源模块适用于那些系统工作需要不间断电源(冗余电源)的系统配置。电源冗余需要有2个冗余电源模块在同一机架。根据型号的不同而不同,可以为Quantum底板提供8A或11A电流。在高可靠性应用中,使用2个冗余型电源模块为底板提供8A或11A冗余电流(根据型号的不同而不同)。当其中一个电源模块坏了,另一个状态正常的电
&&& 冗余型电源模块适用于那些系统工作需要不间断电源(冗余电源)的系统配置。电源冗余需要有2个冗余电源模块在同一机架。根据型号的不同而不同,可以为Quantum底板提供8A或11A电流。在高可靠性应用中,使用2个冗余型电源模块为底板提供8A或11A冗余电流(根据型号的不同而不同)。当其中一个电源模块坏了,另一个状态正常的电源模块能维持必要的供电,从而使底板的运行和现有的通信不受影响。每个冗余型电源模块上都有一个状态位,并被CPU上的应用程序或上位管理系统监视,以便于快速对电源模块的故障进行反应。
&&& 如果在配置冗余型电源模块时需要另加电源,可在底板上加入第3个冗余电源模块,将冗余电流能力提高到16A或20A(根据型号的不同而不同)。如果3个电源模块中的1个坏了,另外2个状态正常的电源模块将转换成标准冗余方式,为底板提供8A或11A的冗余电流(根据型号的不同而不同)。
&&& 冗余型电源模块可提供交流115/230V、直流24V、直流48/60V和直流125V电源电压。
&&& 底板中,只允许使用一个适合的电源,不得将电源组合使用。
&&& 冗余型电源模块的主要技术特性如表2-10所示。
&&& 表2-10&&& 冗余型电源模块的主要技术参数
&&& 冗余型电源模块的外部接线如图2-18所示。
&&& 图2-18&&& 冗余型电源模块外部接线图
&&& 使用无源触点的输入时,PLC内部的24V电源通过输入器件向输入端提供每点7mA的电流。
&& &每种型号的PLC输入点数量是有确定的,每一个没有使用的输入点,不消耗电能。
(责任编辑: 佚名 )
本文关键字:
免责声明:本文章仅代表作者个人观点,与艾特贸易网无关。本站大部分技术资料均为原创文章,文章仅作为读者参考使用,请自行核实相关内容,如若转载请注明来源:
小型PWM整流器(功率达到10......
电气控制系统由两部分组成......
淬火系统由加热系统、冷却......
按胶水的喷射方式3DP主要......
新闻热点排行常州施耐德变频器维修公司对于变频器发展前景分析
常州施耐德变频器维修公司对于变频器发展前景分析。【凌科自动化】主要从事常州施耐德变频器维修及工业变频器维修,伺服驱动器维修,触摸屏维修,直流调速器维修,电源模块维修,西门子数控系统维修,PLC维修,软启动器维修,进口精密电源模块等工控维修业务。【凌科自动化】拥有高科技先进的测试维修设备,常州伺服电机维修,能够维修国内外各种先进的工业设备电路板,变频器,触摸屏,PLC,伺服驱动器,步进驱动器,伺服电机,步进电机等。不分行业和设备种类,无原理图维修。常州施耐德变频器维修这电动机的转矩输出达不到要求也。由于不同变频器的各种参数存在差异,在相同条件下,与其连接的电动机的负载能力也会出现差异,还有可能是由于变频器的调试和控制方法不同而引起负载能力的差异。施耐德变频器维修这时可以对变频器的转矩提升量进行增加,但是需要保证在适当的范围内,这时电动机的温度可能会出现一定量的提高,需要对相应风机和泵的降转矩进行降低。
常州施耐德变频器维修施耐德变频器维修公司表示这如果你使用的是新变频器,而你的变频器也不用什么其他的就是保护设备,方便调速的话。那么一般也就是设置那么几个参数,电机的额定电压电流功率,启动时间、减速时间,施耐德变频器维修,这样基本就够用了,如果你是配电柜有外接的启动停止以及电位器等,还需要调一下参数让他们生效,到plc等这些的东西的话,也是设置参数的问题,就是比较经典的恒压供水,以后碰到此类问题,在执行施耐德变频器维修时多看一下说明书,多试验几回,应该就没有问题了!
常州变频器通过限流电阻R,实现了软启动。当电路刚启动时,电容C相当于短路,接触器KM断开,电流通过R,给C充电,当电容快充满时,接触器合上,R失去作用。软启动能保护电网不受变频器的冲击,也能保护对IGBT变频管的冲击。制动电路当电容C的电压超压时,控制模块使IGBT管V导通,施耐德变频器维修中心通过电阻DR给C放电,保护了IGBT逆变管,不使逆变IGBT管C极超高压损坏。三相全桥逆变电路,6个IGBT管受启动电路控制开关速度,通过启动电路的PWM控制电流电压。电流又通过电流互感器反馈给单片机,去控制驱动保护电路。
施耐德变频器维修公司对于变频器发展前景分析常州施耐德变频器维修,通过详细询问相关工作人员后,本人了解到该变频器因工艺要求,施耐德变频器维修需经常通过面板进行操作。为此本人怀疑该故障极有可能是由于面板上“STOP”按钮失效所致。diangon.com版权所有,待拆开后检测发现“STOP”按键所用微动点触按钮在按压过程中,其弹性较正常时大幅降低,至此本人确信此无规律停机故障为面板“STOP”按钮内接触片失效,不定时出现接通现象所致!由于手头暂无该型点触按钮,本人遂将该变频器控制改为外部端子操作方式。
施耐德变频器维修常州施耐德变频器维修公司表示如果是变频器出现故障,在对于施耐德变频器维修时,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试
1、测试整流电路
找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。
2、常州施耐德变频器维修公司指出测试逆变电路将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障
二、动态测试
在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:
1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、施耐德变频器维修公司指出检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。
3、上电后检测故障显示内容,并初步断定故障及原因。
4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障
5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,*是满负载测试。
三、故障判断
1、整流模块损坏一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。
2、逆变模块损坏一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。施耐德变频器维修在确定无任何故障下,运行变频器。
3、上电无显示一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。
4、上电后显示过电压或欠电压一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。
5、上电后显示过电流或接地短路一般是由于电流检测电路损坏。如霍尔元件、运放等。
6、启动显示过电流一般是由于驱动电路或逆变模块损坏引起。
7、空载输出电压正常,带载后显示过载或过电流该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起。
常州施耐德变频器维修 常州施耐德变频器维修公司对于变频器发展前景分析}

我要回帖

更多关于 施耐德电源模块 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信