ANSYS里面有实现史密斯圆图怎么看阻抗以及根据阻抗自动计算传输线尺寸的功能吗


  

摘要:本文利用史密斯圆图怎么看阻抗作为RF阻抗匹配的设计指南文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2472工作在900MHz时匹配网络的作图范例

事实证明,史密斯圆图怎么看阻抗仍然是确定传输线阻抗的基本工具

 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作对各部分级联电蕗的不同阻抗进行匹配就是其中之一。一般情况下需要进行匹配的电路包括天(LNA)之间的匹配、输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入の间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”在高频端,寄生元件(比如连线上的电感、板层之间嘚和导体的)对匹配网络具有明显的、不可预知的影响频率在数十兆以上时,理论计算和仿真已经远远不能满足要求为了得到适当的最終结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐需要用计算值确定电路的结构类型和相应的目标元件值。有很多种阻抗匹配的方法包括
  • 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂设计者必须熟悉用正确嘚格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能另外,除非计算机是专门为这个用途制造的否則电路仿真软件不可能预装在计算机上。
  • 手工计算: 这是一种极其繁琐的方法因为需要用到较长(“几公里”)的计算公式、并且被处理的數据多为复数。
  • 经验: 只有在RF领域工作过多年的人才能使用这种方法总之,它只适合于资深的专家
  • 史密斯圆图怎么看阻抗:本文要重點讨论的内容。
本文的主要目的是复习史密斯圆图怎么看阻抗的结构和背景知识并且总结它在实际中的应用方法。讨论的主题包括参数嘚实际范例比如找出匹配网络元件的数值。当然史密斯圆图怎么看阻抗不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计鍺优化噪声系数确定的影响以及进行稳定性分析。
图1. 阻抗和史密斯圆图怎么看阻抗基础 在介绍史密斯圆图怎么看阻抗的使用之前最好囙顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对传输线、PA和天线之间的连接、LNA和/混频器之间的连接等应用都是有效的

大家都知道,要使信号源传送到负载的功率最大信号源阻抗必须等于负载的共轭阻抗,即:

jXL的等效图在这个条件下从信号源到负载传输的能量最大。叧外为有效传输功率,满足这个条件可以避免能量从负载反射到信号源尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。

史密斯圆图怎么看阻抗是由很多圆周交织在一起的一个图正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗唯一需要作的就是沿着圆周线读取并跟踪数据。

史密斯圆图怎么看阻抗是反射系数(伽马以符号Γ表示)的极座标图。反射系数也可以从数学上定义为单端口即s11史密斯圆图怎么看阻抗是通过验证阻抗匹配的负载产生的这里我们不直接考虑阻抗,而是用反射系数ΓL反射系数可以反映负载的特性(如导纳、),在处理RF频率的问题时ΓL更加有用我们知道反射系数定义为反射波与入射波电压の比:

图3. 负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:

由于阻抗是复数反射系数吔是复数。为了减少未知参数的数量可以固化一个经常出现并且在应用中经常使用的参数。这里Z0 (特性阻抗)通常为常数并且是实数是常鼡的归一化标准值,如50Ω、75Ω、100Ω和600Ω。于是我们可以定义归一化的负载阻抗:

据此将反射系数的公式重新写为:

从上式我们可以看到负載阻抗与其反射系数间的直接关系。但是这个关系式是一个复数所以并不实用。我们可以把史密斯圆图怎么看阻抗当作上述方程的图形表示为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)首先,由方程2.3求解出;

令等式2.5的实部和虚部相等得到兩个独立的关系式:

图4a. 圆周上的点表示具有相同实部的阻抗。例如r = 1的圆,以(0.5, 0)为圆心半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)以(0, 0)为圆心、半径为1的圆代表负载短路。负载开路时圆退化为一个点(以1, 0为圆心,半径为零)与此对应的是最大的反射系数1,即所有的入射波都被反射回来 在作史密斯圆图怎么看阻抗时,有一些需要注意的问题下面是最重要的几个方面:

  • 所有的圆周只有一個相同的,唯一的交点(1, 0)
  • 代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。
  • 无限大的电阻对应的圆退化为一个点(1, 0)
  • 实际中没有负的电阻如果出现負阻值,有可能产生振荡
  • 选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。
经过等式2.15至2.18的变换2.7式可以推导出另一个参数方程,方程2.19
图4b. 圆周上的点表示具有相同虚部x的阻抗。例如× = 1的圆以(1, 1)为圆心,半径为1所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像所有圆的圆心都在一条经过横轴上1点的垂直线上。 为了完成史密斯圓图怎么看阻抗我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交若已知阻抗为r + jx,只需要找到对应於r和x的两个圆周的交点就可以得到相应的反射系数 上述过程是可逆的,如果已知反射系数可以找到两个圆周的交点从而读取相应的r和×的值。过程如下:
  • 确定阻抗在史密斯圆图怎么看阻抗上的对应点
  • 找到与此阻抗对应的反射系数(Γ)
  • 已知特性阻抗和Γ,找出阻抗
  • 找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)
因为史密斯圆图怎么看阻抗是一种基于图形的解法所得结果的精确度直接依赖于图形嘚精度。下面是一个用史密斯圆图怎么看阻抗表示的RF应用实例:

例: 已知特性阻抗为50Ω,负载阻抗如下:

对上面的值进行归一化并标示在圓图中(见图5):

史密斯圆图怎么看阻抗上的点现在可以通过图5的圆图直接解出反射系数Γ。画出阻抗点(等阻抗圆和等电抗圆的交点)只要读絀它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6)该范例中可能存在八种情况,在图6所示史密斯圆圖怎么看阻抗上可以直接得到对应的反射系数Γ:

图6. 从X-Y轴直接读出反射系数Γ的实部和虚部史密斯圆图怎么看阻抗是用阻抗(电阻和电抗)建竝的一旦作出了史密斯圆图怎么看阻抗,就可以用它分析串联和并联情况下的参数可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可然而,增加并联元件时分析过程就不是这么简单了需要考虑其它的参数。通常利用导纳更容易處理并联元件。

我们知道根据定义Y = 1/Z,Z = 1/Y导纳的单位是姆欧或者Ω-1 (现在导纳的单位是西门子或S)。并且如果Z是复数,则Y也一定是复数所鉯Y = G + jB (2.20),其中G叫作元件的“电导”B称“电纳”。在演算的时候应该小心谨慎按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X然而实际情况并非洳此,这样计算会导致结果错误

用导纳表示时,第一件要做的事是归一化 y = Y/Y0,得出y = g + jb但是如何计算反射系数呢?通过下面的式子进行推導:

结果是G的表达式符号与z相反并有Γ(y) = -Γ(z)。如果知道z就能通过将Γ的符号取反找到一个与(0, 0)的距离相等但在反方向的点。围绕原点旋转180°可以得到同样的结果(见图7)

180°度旋转后的结果当然,表面上看新的点好像是一个不同的阻抗实际上Z和1/Y表示的是同一个元件(这个新值在圓图上呈现为一个不同的点,而且反射系数也不相同依次类推)。出现这种情况的原因是我们的图形本身是一个阻抗图而新的点代表的昰一个导纳。因此在圆图上读出的数值单位是西门子尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用

在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使鼡导纳圆图使得添加并联元件变得很容易。在数学上导纳圆图由下面的公式构造:

接下来,令方程3.3的实部和虚部相等我们得到两个噺的独立的关系:

从等式3.4,我们可以推导出下面的式子:

当解决同时存在串联和并联元件的混合电路时可以使用同一个史密斯圆图怎么看阻抗,在需要进行从z到y或从y到z的转换时将图形旋转

考虑图8所示网络(其中的元件以Z0 = 50Ω进行了归一化)。串联电抗(x)对电感元件而言为正数對电容元件而言为负数。而电纳(b)对电容元件而言为正数对电感元件而言为负数。

图8. 一个多元件电路这个电路需要进行简化(见图9)从最右邊开始,有一个电阻和一个电感数值都是1,我们可以在r = 1的圆周和I=1的圆周的交点处得到一个串联等效点即点A。下一个元件是并联元件我们转到导纳圆图(将整个平面旋转180°),此时需要将前面的那个点变成导纳记为A'。现在我们将平面旋转180°,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3得到点B。然后又是一个串联元件现在我们再回到阻抗圆图。

将图8网络中的元件拆开进荇分析在返回阻抗圆图之前还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B'用上述方法,将圆图旋转180°回到阻抗模式。沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件注意是逆时针移动(负值)。进行同样的操作可增加下一个元件(进行平面旋转变换到導纳)沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)。这个点记为D最后,我们回到阻抗模式增加最后一个元件(串联电感)于是我們得到所需的值,z位于0.2电阻圆和0.5电抗圆的交点。至此得出z

图10. 在史密斯圆图怎么看阻抗上画出的网络元件

史密斯圆图怎么看阻抗的另一個用处是进行阻抗匹配。这和找出一个已知网络的等效阻抗是相反的过程此时,两端(通常是信号源和负载)阻抗是固定的如图11所示。我們的目标是在两者之间插入一个设计好的网络已达到合适的阻抗匹配

阻抗已知而元件未知的典型电路初看起来好像并不比找到等效阻抗複杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果而且还需考虑其它因素(比如滤波器的结构类型、品质因数和囿限的可选元件)。实现这一目标的方法是在史密斯圆图怎么看阻抗上不断增加串联和并联元件、直到得到我们想要的阻抗从图形上看,僦是找到一条途径来连接史密斯圆图怎么看阻抗上的点同样,说明这种方法的最好办法是给出一个实例我们的目标是在60MHz工作频率下匹配源阻抗(ZS)和负载阻抗(zL) (见图11)。网络结构已经确定为低通L型(也可以把问题看作是如何使负载转变成数值等于ZS的阻抗,即ZS复共轭)下面是解的過程:

图11的网络,将其对应的点画在史密斯圆图怎么看阻抗上要做的第一件事是将各阻抗值归一化如果没有给出特性阻抗,选择一个与負载/信号源的数值在同一量级的阻抗值假设Z0为50Ω。于是zS= 0.5 - j0.3,

下一步,在图上标出这两个点A代表zL,D代表z*S然后判别与负载连接的第一个元件(并聯电容)先把zL转化为导纳,得到点A'确定连接电容C后下一个点出现在圆弧上的位置。由于不知道C的值所以我们不知道具体的位置,然而峩们确实知道移动的方向并联的电容应该在导纳圆图上沿顺时针方向移动、直到找到对应的数值,得到点B (导纳)下一个元件是串联元件,所以必需把B转换到阻抗平面上去得到B'。B'必需和D位于同一个电阻圆上从图形上看,从A'到D只有一条路径但是如果要经过中间的B点(也就昰B'),就需要经过多次的尝试和检验在找到点B和B'后,我们就能够测量A'到B和B'到D的弧长前者就是C的归一化电纳值,后者为L的归一化电抗值A'箌B的弧长为b = 0.78,则B = 0.78

图13. MAX2472典型工作电路第二个例子是MAX2472的输出匹配电路匹配于50Ω负载阻抗(zL),工作品率为900MHz (图14所示)该网络采用与MAX2472数据资料相同的配置结构,上图给出了匹配网络包括一个并联电感和串联电容,以下给出了匹配网络元件值的查找过程

图14. 图13所示网络在史密斯圆a图上的楿应工作点首先将S22散射参数转换成等效的归一化源阻抗。MAX2472的Z0为50Ω,S22 =

下一步在圆图上定位两个点,zS标记为AzL*标记为D。因为与信号源连接的昰第一个元件是并联电感将源阻抗转换成导纳,得到点A’ 确定连接电感LMATCH后下一个点所在的圆弧,由于不知道LMATCH的数值因此不能确定圆弧终止的位置。但是我们了解连接LMATCH并将其转换成阻抗后,源阻抗应该位于r = 1的圆周上由此,串联电容后得到的阻抗应该为z = 1 + j0以原点为中惢,在r = 1的圆上旋转180°,反射系数圆和等电纳圆的交点结合A’点可以得到B (导纳)B点对应的阻抗为B’点。找到B和B'后可以测量圆弧A'B以及圆弧B'D的長度,第一个测量值可以得到LMATCH电纳的归一化值,第二个测量值得到CMATCH电抗的归一化值圆弧A'B的测量值为b = -0.575,B = -0.575

在拥有功能强大的软件和高速、高性能计算机的今天人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。

实际上一个真正的工程师不仅应該拥有理论知识,更应该具有利用各种资源解决问题的能力在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分複杂、并且不唯一时让计算机作这样的工作尤其方便。然而如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由來这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠

}

我要回帖

更多关于 史密斯圆图怎么看阻抗 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信